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Abstract
Similar, coexisting species often segregate along the spatial ecological axis. Here, we

examine if two top predators (jaguars and pumas) present different fine-scale habitat use in

areas of coexistence, and discuss if the observed pattern can be explained by the risk of

interference competition between them. Interference competition theory predicts that

pumas should avoid habitats or areas used by jaguars (the dominant species), and as a

consequence should present more variability of niche parameters across study areas. We

used non-invasive genetic sampling of faeces in 12 different areas and sensor satellite fine-

scale habitat indices to answer these questions. Meta-analysis confirmed differences in

fine-scale habitat use between jaguars and pumas. Furthermore, average marginality of the

realized niches of pumas was more variable than those of jaguars, and tolerance (a mea-

sure of niche breadth) was on average 2.2 times higher in pumas than in jaguars, as

expected under the interference competition risk hypothesis. The use of sensor satellite

fine-scale habitat indices allowed the detection of subtle differences in the environmental

characteristics of the habitats used by these two similar top predators, which, as a rule, until

now were recorded using the same general habitat types. The detection of fine spatial seg-

regation between these two top predators was scale-dependent.

Introduction
Competition among species is a key force shaping community structure. It has long been rec-
ognised that similar coexisting species must present mechanisms that decrease potential com-
petition between them to avoid resource depletion (exploitative competition) or the risk of
being injured or killed (interference competition; [1–4]). This fact is particularly evident when
the potential for intraguild predation (i.e., an extreme form of interference competition; [5]) is
high between species belonging to the same ecological assemblage [5, 6]. Thus, predators can
affect individual fitness, as well as population and community processes, through lethal or
non-lethal effects, and behavioural or ecological compensation for predation risk should occur
[6, 7].
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Segregation along the spatial ecological axis of the niche is where more often competition is
reflected [8]; also see [9], for evidences of competition on other niche axis). Victims of interfer-
ence competition might avoid areas of high interference risk by total range segregation, differ-
ent use of areas or habitats within ranges, or by microhabitat shifting within habitats (e.g., [5,
10–13]). Scale and/or environmental heterogeneity must be taken into account to be able to
detect the spatial signature imposed by the biotic interactions within the studied community or
pairs of species [14, 15], more even when species are highly similar and interactions are con-
sumer-resource in nature (e.g., [13, 15]). However, in many occasions it is not possible to con-
duct experiments for logistic or ethical reasons, so disentangling whether segregation in the
spatial ecological axis is the result of different habitat preferences or shifts induced by biotic
interactions between species frequently remains unanswered. When behavioural or ecological
compensation is occurring in subordinate species by virtue of interference competition, theory
predicts that their populations are likely to show niche contractions (i.e., specialization) or
expansions (i.e., generalization) in the presence of competitors as compared to dominant spe-
cies (i.e., “realized niches” of dominant species should be closer to “fundamental niches”, while
this should not be the case for victim species; [4]). Therefore, examining niche parameters over
several different areas would contribute to examine if interference competition explains any
spatial segregation pattern found. Thus, as a rule, averaged data of niche parameters from sev-
eral study areas of the subordinate species would show higher variability than that of the domi-
nant one (Fig 1).

In carnivorous mammals, interference competition (and often its associated intraguild pre-
dation) is an extensive phenomenon [16]. In many cases the interaction is asymmetric, with

Fig 1. Characteristic of niches for dominant and subordinate species.Graphical representation of
characteristics of niches for dominant (shaded area) and subordinate (non-shaded areas) competitors, when
interference competition is present. The dominant species would occupy the space that suits its requirements
and its niche position and breadth would be determined by the characteristics of the environment (i.e., their
fundamental and realized niches would coincide). The subordinate species in the presence of the dominant
one, and when interference competition is present, would change its niche to partially or totally avoid
competition (encounters in our case) with the dominant species, which would result in wider niche breadth,
displaced with regard to its theoretical centre, or even bimodal niches with separate peaks. Thus, when
estimating niche parameters over several study areas for the jaguar-puma pair, it is expected that pumas (the
subordinate or less competitive species) will present greater variability of parameters (niche centre and/or
breadth) than jaguars.

doi:10.1371/journal.pone.0155626.g001
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one species usually being the dominant or predator (often the larger one) and the other the
subordinate or victim (usually the smaller one; [16, 17]). Several examples demonstrate how
the victim species tries to avoid interference competition by segregating along the spatial eco-
logical axis, using different areas or (macro) habitats to successfully avoid or decrease the risk
of encounters with the predator species (reviews in [16, 18]). Although it is well established
that plant resources, vegetation structure or habitat complexity (i.e., fine-scale spatial
approaches) may also moderate the strength of predator–predator interactions under interfer-
ence competition in arthropod [19] and aquatic systems [10], evidence in terrestrial vertebrate
systems is almost non-existent, mainly between similar top predators (see [20–22] for examples
in non-closely similar top mammalian predators).

The predator pair of felids, jaguar (Panthera onca) and puma (Puma concolor), is particu-
larly interesting to address this question in large similar vertebrate potentially competitor top
predators. Both species coexist throughout the distribution area of jaguars, and share similar
life history traits and behaviours [23]. Both are habitat generalists, found from arid areas to
rain forests. Thus, potential for competition between them is high [24], and coexistence has
been repeatedly reported in both local community (sensu Hanski & Gilpin [25] definition) and
regional metacommunity (sensu Wilson [26]). Under an interference competition scenario,
jaguars are dominant over pumas. Despite it is difficult to detect the intraguild predator phe-
nomenon between solitary, forested and low-density species such as jaguars and pumas, there
are records of jaguars killing pumas in areas of Brazil, Mexico and Argentina [27–30]. Thus
coexisting at a regional scale, theory predicts that pumas should avoid habitats or areas used by
jaguars to decrease the risk of encounters with them (i.e., within the local community scale).

Despite these expectations, no study to date has supported the hypothesis of a clear spatial
local avoidance of jaguars by pumas [31–35]. In a few cases, usually in which radio-tracking on
a limited number of individuals sharing space was carried out, very small differences, almost
anecdotal, in (macro-) habitat use were recorded within local community scale studies [36–40].
However, these small differences may well be ascribed to individual variability rather than
actual differences between species. The only generally accepted difference found between the
two species is that pumas are more tolerant to human-influenced landscapes than jaguars [40,
41]. In fact, in most areas from which jaguars have been extirpated, pumas persist. However,
Foster et al. [42] found a contrary result, with jaguars being more tolerant than pumas to
human-altered habitats. Thus, the spatial coexistence between these two potentially competing
species remains an interesting question to solve. The general result is that they share space (at
regional and local scale) without any apparent avoidance. Nevertheless, some authors have
proposed that a fine-scale segregation in habitat use (even finer than that of traditional local
scale sensu Hanski & Gilpin [25] between the two species should be operating to explain coex-
istence [31, 40, 42]. As previously stated, results found from other theoretical and empirical
studies (see above) suggest that spatial avoidance between species with potential for interfer-
ence competition may well be scale-dependent, and only observed at the micro-habitat scale.

Here, we first examine whether there is fine-scale habitat segregation between pumas and
jaguars, and if so, whether the interference competition risk hypothesis might explain the
observed differences.

First, to examine if jaguars and pumas segregate in fine-scale habitat use, we used meta-
analysis theory and statistical framework on data collected from a large-scale, non-invasive
genetic sampling of faeces within the distribution range of both species, and new, easy-to-use
sensor satellite habitat indices available for a great variety of areas and years [43, 44]. We sam-
pled areas with very different environmental conditions to employ traditional comparative
study methods. Thus, we carried out a meta-analysis to test for this hypothesis. Meta-analysis
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is a quantitative method that combines results from different areas or different studies on the
same topic to draw a general conclusion and evaluate consistency among study findings [45].

Second, to examine if the interference competition risk hypothesis might explain results, we
used the conceptual development of the theory that states that populations that are dominant
by virtue of interference competition are likely to show minimal niche contraction or expan-
sion in the presence of competitors as compared to subordinate species ([4]; Fig 1). Thus, if jag-
uars are the dominant species and pumas the subordinate species, the “realized niche” of
jaguars will be closer to the “potential niche” for the spatial axis analyzed in this study, while
this should not be the case for pumas. This result would be considered a consequence of the
risk for interference competition between the species. Therefore, for data summarized across
several study areas, we expected that pumas would present, in general, a greater variability in
niche parameters than jaguars in order to avoid sites used by jaguars (Fig 1). To test these pre-
dictions, we used a multivariate method, the Outlying Mean Index (OMI; [46]), to estimate
niche parameters for both species in several study areas. OMI analyses address the question of
niche breadth and niche separation by measuring the distance between the mean habitat condi-
tions used by the species (species centroid), and the mean habitat conditions of the sampling
area (origin of the niche hyperspace).

Materials and Methods

Species sampling
Pumas and jaguars were systematically sampled by slowly walking on dirt roads and animal-
and human-made trails searching for faeces of the two species in 12 different areas (five
Mexico: all in Yucatan peninsula, and seven in Brazil: four Amazon, one in Pantanal, one in
Cerrado and another in Caatinga; S1 Study Areas and Methods; S1 Fig). Faeces surveys fol-
lowed by genetic analyses are a very convenient method for sampling carnivores in fine-scale
habitat studies because they provide an accurate way of detecting elusive species in large scale
surveys [47]. On a few occasions, faeces were opportunistically collected during other research
activities or moving through the study areas. Except on rare occasions, faeces were collected
during the dry season. Each area was sampled from one to five times between 2004 and 2012.
Caiman, Capivara and Caobas were sampled in one year, Calakmul, Petcacab, Maraca and
Uatumã in two years, Eden, Zapotal, Virua and Emas in three years, and Ducke in five years.
Since we always simultaneously sampled both species in each area and year, we assumed that
this fact did not influence our results. In Refúgio Caiman, Serra Capivara, and Emas National
Park faeces were collected with the help of scat detector dogs [48].

The location of faeces was georeferenced with the aid of GPS (1 Garmin), and an accuracy
of 3–5 m. For fresh samples, a small portion was initially stored in 96% ethanol for 24–48
hours and then transferred to silica gel for storage. Dried samples were directly stored in silica
until genetic analyses were conducted.

Sampling in Brazil were carried out under licenses no. 11214 and no. 13781 of ICMBio, and
nº 131/2005 CGFAU/LIC, 13883–1 SISBIO and 15664–1 SISBIO of the Instituto Brasileiro do
Meio Ambiente–IBAMA, and at the Mexican sites under the licence SGPA/DGVS/549 of the
Dirección General de Vida Silvestre (Semarnat). Owner, mayors or directors of private com-
munal lands (Ejido Caoba and Ejido Petcacab in Mexico) or reserves (El Edén and Zapotal in
Mexico, Refúgio Ecológico Caiman in Brazil) provided with permission for sampling as well.
Faecal samples were exported from Brazil to Spain for genetic analysis under IBAMA/CGEN
Autorização de Acesso licence nº 063/05 and IBAMA/CITES export licences nº 0123242BR,
08BR002056/DF and 09BR003006/DF, and from Mexico to Spain under the export licences nº
MX33790 and MX42916 of the Secertaria de Medio Ambiente/CITES. Since we conducted a
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non-invasive sampling of faeces, the study did not need any approval by an Institutional Ani-
mal Care and Use Committee or equivalent animal ethics committee.

Genetic analyses of faeces
DNA was extracted from faecal samples using protocols based on the GuSCN⁄silica method
[49] and further purified and concentrated through ultrafiltration using Microcon-30 (Milli-
pore). Species identification was performed using previously developed species-specific prim-
ers [50]. All molecular analyses were undertaken in the Molecular Ecology Laboratory of the
Doñana Biological Station (LEM-EBD).

Fine-scale habitat characteristics of areas used by jaguars and pumas
One limitation in the analysis of habitat use and selection for species living in remote areas is
the lack of data for a detailed characterisation of their habitats. Although global land-cover
products can provide information on the distribution of broad vegetation categories (e.g., for-
ests vs. agricultural areas), this information is too coarse to detect heterogeneity in environ-
mental characteristics, including fine-scale variations in the vegetation composition and
structure (reviewed in [44]). On the other hand, performing vegetation classifications ad-hoc is
often unfeasible in habitat studies involving large spatial areas or many different study areas.
To overcome these problems, we designed an alternative approach focusing on differences in
synoptic indicators of the functional characteristics of ecosystems between sites selected by jag-
uars and pumas as a surrogate of habitat attributes. Therefore, we characterised the sites used
by both species based on spectral indices of ecosystem functioning calculated from remote
sensing [51]. These indices are integrative descriptors of the land surface affected by both struc-
tural and functional characteristics of the vegetation, including the vegetation cover, plant can-
opy architecture, species composition, phenology and productivity (see [52], for further
details). Furthermore, they provide consistent information with global coverage at fine spatial
scales, making them highly useful for analysing remote, broad and separated regions using a
uniform methodology.

We specifically used time series of the Enhanced Vegetation Index (EVI; [53]) to character-
ise the functional properties of ecosystems (seven different functional attributes were calcu-
lated; see S1 Study Areas and Methods for a detailed description of the procedure) around each
site where either of the two species were located. The seven different descriptors aimed to cap-
ture the potential differences between sites in the seasonal vegetation dynamics and the inter-
annual variability and were selected attending to their capacity to synthesize the properties of
the EVI time series. The annual EVI integral (EVIi), a surrogate of the annual ecosystem pri-
mary productivity, was estimated as the mean of all EVI values. The inter-annual variability in
productivity (cvEVIi) was estimated as the coefficient of variation of the annual EVI integral.
The average maximum EVI (EVImax) and the average minimum EVI (EVImin) were esti-
mated as measures of the annual primary productivity peaks and decreases, respectively. The
average relative difference between the annual maximum and minimum (EVIrel), and the aver-
age coefficient of variation between values within the year (cvEVIi) were both calculated as sur-
rogates for vegetation seasonality. Finally, the circular dispersion in the date of maximum EVI
was estimated as a measure of inter-annual fluctuations in the period of maximum vegetation
productivity (rEVIvec).

Meta-analysis
We used so-called meta-analytic thinking [54] to examine if jaguars and pumas differed in
fine-scale habitat use (i.e., primary productivity in 250-m cells; see above). Meta-analysis allows
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for the comparison of data through effect size estimates [55]. We used the Hedges’ d to calcu-
late the effect size, including a correction when sample size was below 20 [45, 55], which was
the case in some of our study areas (S1 Table). Hedges’ d expresses in standard deviations the
magnitude of response of comparisons between two groups. Because we did not expect that
jaguars and pumas use sections of higher or lower primary productivity in the same way in all
study areas, which were located in very different biomes, we calculated the absolute difference
in the EVI index means rather than the difference in any one direction (e.g., [56]). Our hypoth-
esis was simply that jaguars and pumas differ in fine-scale habitat use when inhabiting the
same study areas, making no inference about the ultimate environmental causes of such differ-
ences. Therefore, absolute values of effect sizes were an appropriate measure for testing our
hypothesis.

For comparison between species, we ran separate random-effects meta-analyses for each
focal EVI variable using a restricted maximum-likelihood estimation with the Metafor R pack-
age [57, 58]. Random-effects meta-analysis uses the more reasonable assumption that each
study has a ‘true’ effect size different from each other [58, 59]. When more than one annual
survey was carried out in a given study area, samples were pooled for analysis. Study areas with
less than two sampling cells for any species were not considered for analyses, and we only con-
sidered each cell once for each species (note that sometimes there were>1 faeces per cell).

Additionally, we calculated a composite effect size [60] to examine the magnitude of the
overall response in fine-scale habitat use between species. For this purpose, we used a flexible
meta-analytical approach [59, 61], considering the general effect sizes for each study area and
species. This approach allows the use of multiple non-independent effect sizes (i.e., different
EVI indices in our case) obtained for the same study areas allowing an increase in the statistical
power of the comparison and a unique estimate of effect sizes for each study area. We used a
Markov chain Monte Carlo algorithm to fit generalized linear mixed-effects models and esti-
mate parameters (package MCMCglmm in R version 3.1.0; [62, 63]).

OMI analyses
Niche parameters were estimated by the Outlying Mean Index (OMI; [46]). In contrast to
other multivariate methods, OMI describes the species response whether it is linear or unimo-
dal, giving equal weight to species-rich and species-poor sites. Its interpretations are robust to
multicollinearity among the explanatory variables [46]. OMI measures the marginality (so-
called OMI) of species, or the distance between the average environmental conditions (in our
case) used by a species and the mean environmental conditions of the sampling units of the
study area. A high marginality indicates that a species is found under atypical environmental
conditions within the study area, whereas a low marginality indicates that there is no difference
between the overall environmental conditions and those where the species is found. The OMI
analysis also provides an index of tolerance as a measure of niche breath. High tolerance values
indicate that the species is distributed along a variety of environmental conditions, while low
values imply that the species is distributed along a more limited range of environmental condi-
tions. A third niche parameter is the residual tolerance. The residual tolerance index indicates
the variance in species niche not taken into account by the marginality axis. Thus, this index
helps to determine the influence of the tested environmental conditions on the distribution of
the species. Low values indicate that the relationship between the study's environmental condi-
tions and the species distribution is high, whereas high values indicate that they are weakly
related. Additionally, the OMI analysis also provides an inertia estimate, and its value repre-
sents the total variance of the environmental table weighted by the species distribution profile.
This variability is decomposed into OMI+tolerance+residual tolerance (expressed as
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percentages of inertia), so the individual proportion of this variability associated with the three
indices may be directly related with the specific parameter of interest examined in this study
(marginality or tolerance).

OMI uses an environmental matrix with the values for all the sampling sites in the study
area for the selected environmental variables (EVI indices in our case), and a species matrix
that included the number of samples of each species per each sampling site (number of faeces
in our case). Sampling sites were those 250-m grid cells that were intersecting transects. On
average, for the 12 study areas we obtained information on environmental values (i.e., EVI
indices) for 570±444.7 grid cells (range = 127–1561).

OMI analyses were conducted using the ADE-4 package [64] of the R Statistical Package
[57], and differences between the two species in niche parameters were examined by t-tests,
once data were log- or arcsin-transformed to comply with normality assumptions.

To graphically represent the magnitude of the differences when comparing jaguars and
pumas for OMI results (marginality, tolerance and residual tolerance), we employed a com-
monly used metric in ecology, the log response ratio (lr; [55]):

lr ¼ lnðX
j

Xp
Þ

where Xj and Xp are the mean values for jaguars and pumas, respectively. Thus, in our case, lr
would indicate how many times a given niche parameter of jaguars (positive values) or pumas
(negative values) would be higher than that of the other species. General trends in variability of
data (OMI and tolerance) for each species independently were also represented by constructing
standard boxplots.

Results

Sample sizes
For the 12 study areas, the mean number of faeces was 30.1 (range = 2–67) and 28.9 (range =
8–64) for jaguars and pumas, respectively (S1 Table). Once we removed duplicate samples for
the same cells, the mean number of sampled cells was 27.4 (range = 2–61) and 27.3 (range =
8–60) for each species, respectively.

Fine-scale habitat segregation
Effect sizes on productivity indices of the areas considered as being used by pumas and jaguars
for the 12 study areas were only significantly different from zero in two out of 12 areas for
meanEVIi, in one area for meanEVIcv, two areas for meanRVIrrel, two areas for rEVIvec, no
area for cvEVIi, three areas for meanEVImin, and one area for meanEVImax (S2 Fig). How-
ever, meta-analysis detected significant differences for the seven EVI indices considered, and
effect sizes ranged between 0.249 and 0.382 (Table 1). There was no significant heterogeneity
among study areas in effect sizes (Table 1), and therefore it was not necessary to look for a
moderator variable that could explain observed differences among the areas. Considering all
the variables together, meta-analysis found that jaguars and pumas segregated by 0.318 (95%
CI = 0.197–0.457) standard deviations in fine-scale habitat use.

Niche variability
On average, marginality for pumas was 1.51 times higher than that for jaguars, but there was
no consistent pattern across areas. Marginality was higher for pumas in seven areas and for jag-
uars in five areas (Fig 2), resulting in non-significant overall differences (Table 2). However,
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although median values were quite similar between species (slightly lower for pumas), disper-
sion of the marginality data was much higher for pumas than for jaguars (Fig 3). Therefore, the
central position of the realized niches of pumas was more variable than that of jaguars.

Tolerance was consistently higher in most study areas (10 out of 12) for pumas, and overall
differences were statistically significant and 2.2 times higher for pumas than for jaguars (Fig 2;
Table 2). The boxplot representations of the data confirmed the trends for both species (Fig 3).
Thus, the realized niches of pumas were wider and more variable than those of jaguars.

Residual tolerance (i.e., the variance in the species niche that is not taken into account by
the marginality axis) was higher in jaguars for most study areas (9 out of 12), being on average
1.3 times higher than for pumas (Fig 2), and the difference was statistically significant
(Table 2).

Furthermore, on average inertia was quite similar in both species; however, 73% of this vari-
ability was from residual tolerance for jaguars, which was significantly higher than that for
pumas (52%). Another 31% of variability of puma data came from tolerance (i.e., variability in
niche breadth), which was significantly higher than for jaguars (16%; Table 2). There were no
significant differences in percentage of inertia coming from marginality (Table 2). Again, the
index related to variability in niche breadth was higher for pumas than for jaguars.

Discussion
Segregation in the spatial niche axis is a well-known mechanism of decreasing competition
among ecologically-similar species [5, 10, 11, 13]. A given species uses different areas or habi-
tats to avoid prey depletion by the dominant exploitative species or more successfully refusing
risk of being injured or killed by the dominant interference species [6, 7, 11]. In any case, the
first step is to detect if there is spatial segregation between a pair of potentially competing spe-
cies. The meta-analysis performed in this study on data collected in 12 study areas showed that
two coexisting top predators, jaguars and pumas, used areas with different microhabitat char-
acteristics as measured by the EVI indices. This result confirmed our first prediction, which
stated that the two species would segregate in fine-scale space use. However, the relevance of
this result goes further, as in our knowledge, this is the first study showing a fine-scale habitat
segregation between two top and ecologically similar vertebrate predators, and besides, the

Table 1. Effect sizes for EVI indices.

Meta-analysis ID Effect size (Hedges’ d) 95% CI Heterogeneity

tau Q df p

MeanEVIi 0.256 0.074–0.437 0.072 12.74 11 0.3106

MeanEVIcv 0.318 0.144–0.493 0 5.76 11 0.8886

MeanEVIrrel 0.382 0.179–0.586 0.158 13.18 11 0.2820

rEVIvec 0.249 0.079–0.419 0 5.81 11 0.8857

cvEVIi 0.260 0.086–0.434 0 2.53 11 0.9956

MeanEVImin 0.263 0.090–0.436 0 12.33 11 0.3390

MeanEVImax 0.342 0.141–0.543 0 13.23 11 0.2784

Effect size estimates for the effect of species (jaguar and puma) on several EVI index values for 12 areas where jaguar and puma faeces were collected.

The number of effect sizes (k) used for meta-analyses was 12 for all variables. Heterogeneity (tau) of the tests is indicated in the table. Statistically

significant effect sizes are in bold. The Hedges’ d indicates the number of standard deviations that separate the species in the value of the variable

considered. A value of zero in effect size indicates no difference in the value of the variable between species.

doi:10.1371/journal.pone.0155626.t001
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Fig 2. Log response ratio for niche parameters. Log response ratio (lr) for OMI (marginality), tolerance and
residual tolerance for showing differences in these indices between jaguars and pumas for the 12 study
areas. On the graph, zero values of lrmeans that the two species had identical index values, and a value of 1
(absolute value) means that jaguars (positive values) or pumas (negative values) would have an index value
2.7 times higher than the other species for a given index and study area. Mean lr (±SD) is shown at the
bottom of each graph.

doi:10.1371/journal.pone.0155626.g002
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spatial segregation was found in much finer scale than usual (i.e., local community scale sensu
Hanski & Gilpin [25]).

Some studies have shown that competing vertebrate predators may use different types of
macrohabitats (review in [16, 18]), but only a couple of them have shown the importance of
environmental heterogeneity to allow for the coexistence of subordinate and dominant preda-
tors at really small spatial scales. Swift fox (Vulpes velox) survival was higher in areas of lower
shrub density despite higher density of the dominant interference predator, coyote (Canis
latrans) [20]. In scrubland areas where Iberian lynx (Felis pardina) and the Egyptian mongoose
(Herpestes ichneumon) coexist, the latter, the inferior interference predator, uses denser parts
of the scrubland than in areas where the former is not present [21]. These examples and the
results of this study suggest that the subordinate predator species can avoid the dominant spe-
cies by fine-shifting micro-habitat use. This behaviour has been previously shown for prey spe-
cies [7], but not for intermediate predators [11]. Differences may be very subtle and barely
measurable under the traditional definitions of (macro) habitat types.

Table 2. Mean values of niche parameters for jaguars and pumas.

Inertia OMI Tol RTol OMI Tol RTol

Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD

Jaguar 6.76 2.11 0.77 0.68 1.11 0.77 4.88 1.60 11.68 10.16 15.71 8.35 72.51 12.28

Puma 7.20 1.78 1.36 1.42 2.24 1.25 3.59 0.76 17.14 16.35 30.82 12.05 52.04 13.69

0.66, 0.516 0.93, 0.363 3.53, 0.002 2.367, 0.027 0.997, 0.329 3.463, 0.002 3.929, 0.001

Mean values of niche parameters for jaguars and pumas in the 12 study areas sampled. OMI, Tol and RTol in italics represent the corresponding

percentages of variability (i.e., of the inertia value) attributed to the corresponding niche parameter. The values of the t statistic, and P-value are given in

the last row for comparison between species (degree of freedom were always 22, and the statistically significant differences are indicated in bold if

P<0.05). OMI = outlying mean index or marginality; Tol = tolerance index, RTol = residual tolerance index.

doi:10.1371/journal.pone.0155626.t002

Fig 3. Data dispersion of niche parameters. Boxplots show differences in dispersion of overall data for
relevant niche parameters (OMI or marginality, and tolerance, Tol) of jaguars and pumas for the 12 study
areas. The box indicates the 25th and 75th percentiles, a line within the box marks the median; error bars
indicate the 90th and 10th percentiles, and points values outside the last percentiles. Despite similar OMI
median values, variability of puma data is higher than that of jaguars, as predicted under the interference
competition hypothesis, with pumas being the subordinate species in the interaction

doi:10.1371/journal.pone.0155626.g003
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In addition to the ecological results, we also showed that remote sensing may help with
these issues (also see [65]). The use of ecosystem functioning variables provided by remote
sensing has allowed the detection of subtle, but clear, differences in the environmental charac-
teristics of the habitats used by two similar competing top predators, which, as a rule, until now
had been thought to use the same habitats in areas of coexistence (e.g., [31–36]). Thus, we can
also conclude that detecting spatial segregation between jaguars and pumas was scale-depen-
dent, and as stated, this fact had not been previously reported in other species of coexisting eco-
logically similar top predators. The theoretical work of Araújo & Rozenfeld [15] and the
empirical study of Swanson et al. [22] with carnivores in Africa show that interactions of the
type dominant-subordinate can be manifest in small scale and not in larger ones.

Some other considerations should be made regarding the spatial resolution we selected for the
fine-scale habitat use analyses, in order to be confident that results were biologically meaningful for
the question posed. We assigned faeces to grid-cells with sides of approximately 250 m (i.e., 6.25
ha), where EVI indices where calculated. This resolution was considered adequate because smaller
areas could have shown differences for the particular points selected for faecal deposition [66].

Results from OMI analyses of the spatial ecological niche of both top predators further sup-
ported the interference competition risk hypothesis to explain the found segregation pattern.
Under an interference competition scenario, theory predicts that the dominant species should
present more similar realized and fundamental niches when studied in several study areas,
whereas the subordinate species should present wider and more variable observed niches (Figs
1 and 3). The results for both species in the 12 study areas confirmed these predictions. As pre-
dicted, pumas had more highly variable observed niche parameters (marginality and tolerance)
than jaguars, which were considered an indirect measure of interference competition with a
dominant species. This result is also in agreement with the limiting similarity hypothesis [2],
which states that species can be no more similar in their utilizations than a certain degree, if
they are to coexist. A further test would be to study spatial niche parameters of pumas in areas
where jaguars are absent. In these situations, pumas should present less variable niche parame-
ters, and their realized niches should be closer to the fundamental niches.

Exploitation competition hypothesis might also explain the observed patterns about habitat
segregation between jaguars and pumas (i.e., differences in habitat segregation might be due to
differences in prey availability for each species). To quantify accurately prey availability is a very
difficult task, and far from being feasible for the species studied here and the large scale of this
study. However, a number of facts indicate that prey abundance and composition might be simi-
lar in cells used by the two predators. In a recent review, Martínez-Gutiérrez et al. [67] identified
the most frequently consumed prey by jaguars and pumas in the Neotropics, and most prey
(57%, n = 14) were common to both felids. All the most consumed prey of both species have
home ranges>6 ha (i.e., equal or higher areas than our grid-cells), and occur in the same general
macrohabitat types shared with the predators (e.g., [68–70]). Furthermore, it has been previously
and repeatedly shown that, when coexisting, the two species use the same areas and macrohabi-
tats (see references above). This was also the case in our 12 study areas, where the mean distance
between jaguar and puma locations averaged 1306 m (SD = 813, range = 264 and 2902 m;
authors unpubl. data), while home range sizes for both species are usually larger than 30–50 km2

(e.g., [31, 39, 71, 72]). Therefore, we can assume that sites used by jaguars and pumas generally
have the same prey abundance and composition, and differences in prey availability should not
explain results on the fine-scale habitat use observed in this study.

Interference in carnivorous mammals is favoured when its cost is small, its effect is high,
and the resource overlap with the species interfered against is high [17], although it can be
strong even in cases with minimal diet overlap [73]. Potential food resource overlap between
jaguars and pumas is always high [67]. Therefore, interference competition by jaguars is likely
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to be a strategy alternative to higher exploitation efficiency by pumas. However, there are some
situations in which the cost of interference competition may be high for jaguars. Both species
greatly vary in body mass between areas, with differences between them being minimal in
some parts of the coincident distribution area, where male pumas may even be larger than
female jaguars (e.g., Central America; [39, 74]). Thus, the strength of the interaction between
jaguars and pumas may be mediated by the body mass differences between them and this may
explain in part (but see below) differences found between our study areas. Unfortunately, there
is no specific information on body mass of male and female jaguars and pumas for all the study
areas and we could not examine this issue.

Along this same line, interference competition may also be manifest with different strength
along resource and habitat gradients, and the interference competitor may exclude the exploi-
tation competitor at the rich end of the resource gradient, whereas the reverse would be true at
the poor end of the gradient ([4]; also see [21, 22, 75], for examples with the pairs Iberian lynx-
Egyptian mongoose and African lion (Panthera leo)-cheetah (Acynonix jubatus)). For example,
in areas rich in food resources jaguars may attain high density and thus have a greater impact
on puma space use and abundance. In this case we predicted 1) a measurable negative effect of
jaguars on puma abundance, and 2) a spatial segregation in the local community scale. How-
ever, if food resources are poor, we predicted that jaguars would be in low abundance and
pumas could attain higher abundances using most of the area, and a fine-scale habitat segrega-
tion between both species would not exist. Thus, results found for particular areas might be
explained by differences in abundances of the two species.
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