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Abstract

Background: Ecological monitoring and sampling optima are context and location specific. Novel applications (e.g.
biodiversity monitoring for environmental service payments) call for renewed efforts to establish reliable and robust
monitoring in biodiversity rich areas. As there is little information on the distribution of biodiversity across the Amazon
basin, we used altitude as a proxy for biological variables to test whether meso-scale variation can be adequately
represented by different sample sizes in a standardized, regular-coverage sampling arrangement.

Methodology/Principal Findings: We used Shuttle-Radar-Topography-Mission digital elevation values to evaluate if the
regular sampling arrangement in standard RAPELD (rapid assessments (‘‘RAP’’) over the long-term (LTER [‘‘PELD’’ in
Portuguese])) grids captured patters in meso-scale spatial variation. The adequacy of different sample sizes (n = 4 to 120)
were examined within 32,325 km2/3,232,500 ha (1293625 km2 sample areas) distributed across the legal Brazilian Amazon.
Kolmogorov-Smirnov-tests, correlation and root-mean-square-error were used to measure sample representativeness,
similarity and accuracy respectively. Trends and thresholds of these responses in relation to sample size and standard-
deviation were modeled using Generalized-Additive-Models and conditional-inference-trees respectively. We found that a
regular arrangement of 30 samples captured the distribution of altitude values within these areas. Sample size was more
important than sample standard deviation for representativeness and similarity. In contrast, accuracy was more strongly
influenced by sample standard deviation. Additionally, analysis of spatially interpolated data showed that spatial patterns in
altitude were also recovered within areas using a regular arrangement of 30 samples.

Conclusions/Significance: Our findings show that the logistically feasible sample used in the RAPELD system successfully
recovers meso-scale altitudinal patterns. This suggests that the sample size and regular arrangement may also be generally
appropriate for quantifying spatial patterns in biodiversity at similar scales across at least 90% (<5 million km2) of the
Brazilian Amazon.

Citation: Norris D, Fortin M-J, Magnusson WE (2014) Towards Monitoring Biodiversity in Amazonian Forests: How Regular Samples Capture Meso-Scale
Altitudinal Variation in 25 km2 Plots. PLoS ONE 9(8): e106150. doi:10.1371/journal.pone.0106150

Editor: Bruno Hérault, Cirad, France

Received December 18, 2013; Accepted August 2, 2014; Published August 29, 2014

Copyright: � 2014 Norris et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: The authors thank the Brazilian National Counsel of Technological and Scientific Development (‘‘Conselho Nacional de Desenvolvimento Cientı́fico e
Tecnológico’’ -CNPq) for the financial support provided through the Science Without Borders Program (‘‘Ciência sem Fronteiras’’ - process 401370/2012-7). WM
held a Bolsa de Produtividade scholarship from CNPq. DN thanks CNPq (process 159806/2012-7 & 164999/2013-2) and CAPES (PNPD20130074) for the
scholarships granted. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* Email: dnorris75@gmail.com

Introduction

Gathering sample data that reliably reflects the underlying

spatial and temporal variability in target measurements is a

fundamental requisite for ecological studies. Bias (sampling bias,

estimation bias, etc.) occurs when the sampling design used

induces errors and artificial differences in the values among

samples [1,2]. These first principles form the basis of many an

undergraduate statistics course but beyond lecture halls obtaining

reliable and representative sample data is one of the primary

challenges for any biodiversity monitoring program [3,4], where

the necessary requirement is that it is sensible and meaningful to

compare and contrast sample values [1,3,4].

There is no panacea in ecological sampling because sampling

optima are context and location specific. Novel applications (e.g.,

monitoring of biodiversity for payments of environmental services)

present further challenges and call for renewed efforts to establish

general monitoring guidelines and frameworks, especially in

biodiversity rich areas [5,6,7]. A particular challenge to establish-

ing payments for biodiversity services is that reliable and robust

long-term monitoring of biodiversity indicators is required to

ensure that services are and will continue to be provided. Such

long-term monitoring of biodiversity requires decisions today

about the sampling distribution to recover information about

changes in response to future, and often unknown, threats.

While the adequacy of sampling for a specific threat might not

be known, we do know that most analyses require knowledge of
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the spatial structure, and hence the distribution patterns of

response variables. If the distribution of sampling is inadequate to

capture the spatial patterns in biodiversity variables, any

subsequent analyses are likely to be inefficient and/or biased.

Design of an optimal spatial sampling scheme requires a careful

balance between sampling locations that are too close to one

another, thus not providing enough new information (highly

autocorrelated data), and sampling locations that are too sparse, so

that processes at other spatial scales introduce too much variability

[8]. Within biodiversity monitoring programs, sample quality

(representativeness) and sample detail (resolution) often require

separate investment in time, money and expertise (p251 of [4]).

Finite resources mean that any biodiversity monitoring program

faces a tension between securing samples that are of both sufficient

quantity (to ensure that results can be extrapolated across scales

that are relevant to management) and quality (to ensure they

reliably capture the underlying variability in the measurement of

interest) for addressing the research objective at hand [3,4].

Field (on-the-ground) data collection provides the empirical

basis upon which our understanding of biodiversity conservation is

built. When a non-contiguous ‘‘sparse’’ [9] sampling strategy is

used (be it regular, stratified, random or clustered), the extent

is not completely surveyed and information is missing about the

spatial pattern [9]. Sample pattern (geometrical configuration of

the sample elements in space) and sample density (number of

samples per unit area) are recognized as two important

determinants for optimizing sparse sampling designs [10].

However, there is no information on the distribution of most

biodiversity variables across the Amazon basin with the precision

necessary to test the adequacy of sampling density and configu-

ration. Faced with such uncertainty, ecologists often turn to rules

of thumb, such as a minimum of 30 sample locations are required

to detect significant spatial autocorrelation [9], and the reliable

estimation of spatial structure and spatial model parameters may

require 100 or more sampling locations [9]. If other factors remain

unchanged, sparse sample patterns ranked by decreasing level of

logistical efficiency are regular, stratified, random, and clustered

[10].

Advances in statistical methodologies and computational power

mean that there are a wide variety of approaches that can be

applied to deal with sampling designs that were traditionally

considered as suboptimal/inappropriate due to lack of spatial

independence between samples [11]. However, for the statistics to

be meaningful and useful, it is vital to understand how well the

sampling captures the variation in the target variable. Although

the substantial body of geostatistical literature enables us to

generate well informed expectations of how well a sample captures

patterns in known abiotic and biotic attributes, it is hard to

establish informed expectations/guidelines when there is little or

no knowledge regarding the response of interest [12].

Although there is little information on the distribution of most

biodiversity variables across the Amazon basin, altitude is a driver

and modulator of species distribution patterns from microhabitat

to biogeographic scales [13,14,15,16]. Altitude not only affects soil,

water availability, climate and a myriad of other abiotic and biotic

variables [16], it is also a key determinant of Amazonian

biodiversity [17,18,19,20,21]. As such, spatial variation in altitude

and biodiversity are expected to be strongly correlated, especially

at local (10 m–1 km [19]) to meso-scales (1 km–100 km [13]).

We can identify at least three reasons why altitude is also

perhaps the only variable available that can be used to provide a

baseline evaluation of sample arrangements for biodiversity

monitoring. Firstly, freely available digital elevation models (such

as those obtained from ASTER/SRTM satellite images) provide a

continuous global coverage of known altitude values at resolutions

,100 m (resolutions vary slightly with distance from the equator).

Secondly, not only is the variation in many response variables

associated with the variation in altitude, but in the majority of

situations, it will also be necessary to model and/or control for the

effects of altitude in both within and between site comparisons. For

example, altitude is used to predict soil characteristics and both

can then be modeled as covariates for numerous response

variables [22,23,24,25,26]. Thirdly, on the scales relevant to

biodiversity monitoring (i.e. excluding changes that occur on

geological timescales) meso-scale altitude values are dependent

simply on the geographical location. Therefore it should be

possible to accurately predict altitude using only spatial predictors,

i.e. by modeling geographic coordinates. These three reasons

make altitude a useful metric for evaluating the adequacy of

sampling arrangements to represent meso-scale spatial variation.

Altitude can be particularly informative for evaluating sample

arrangements for biodiversity monitoring in cases (i) when strata

are not identifiable; (ii) there is uncertainty in the expected changes

in the spatial arrangement of responses [12] (i.e. biodiversity

indicator variables) to future, and often unknown, threats and/or

(iii) where questions involve investigating responses of multiple

indicators [27,28]. Here, we use data from the most widespread

system of standardized biodiversity monitoring in the Amazon

(RAPELD [3,22,29]) to investigate whether regular sampling at 1-

km intervals is sufficient to accurately recover spatial patterns in

altitude within 25 km2 sampling grids across the Brazilian

Amazon. To examine the accuracy of both samples and associated

predictions within the survey area we focus on both sample and

interpolated values within grids. Specifically we address the

following questions:

1) How do sample size and sample standard deviation influence

the representativeness of values from regularly arranged

samples and the associated spatially interpolated altitude

values?

2) How does sample size and sample standard deviation

influence the similarity and accuracy of spatially interpolated

altitude values?

3) What are the lower thresholds in sample size and sample

standard deviation needed to obtain representative, similar

and accurate values?

4) What are the practical implications of these findings for the

use of regular meso-scale sample arrangements in Amazon

forest biodiversity monitoring programs?

Materials and Methods

Study areas and sample arrangements
To investigate how well a regular sample design captures spatial

variation in altitude, we used a series of 565 km study areas

overlaid on SRTM altitude values (version 2 ‘‘void filled’’,

downloaded from http://earthexplorer.usgs.gov/) distributed

across the legal Brazilian Amazon (Figure S1). The legal Brazilian

Amazon is a 5.06 million km2 area defined by the boundaries of

nine Brazilian States: Acre, Amapá, Amazonas, Pará, Rondônia,

Roraima, Tocantins, Mato Grosso, and Maranhão. The 565 km

study areas included seven areas (hereafter ‘‘active research areas’’,

Figure 1, Table S1, Figure S3) that are part of the Brazilian

Program for Biodiversity Research (‘‘Programa de Pesquisa em

Biodiversidade’’ – hereafter PPBio) [3,22] and 1286 randomly

selected areas (Figure S1, Figure S2). The randomly selected areas

provided a representative sample of altitude across the entire legal
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Brazilian Amazon (Figure S1) and enabled us to establish that

conclusions from the seven active research areas were more

generally applicable.

The active research areas were included to provide a real-world

sample of sites established to address research and biodiversity

monitoring questions. PPBio has adopted a standardized survey

system (‘‘RAPELD’’ [3,22,27]) that uses regularly spaced plots

along 5 km trails as its basic sample unit. One of the sample

arrangements used within PPBio [3] is a 25 km2 area delimited by

a series of 5 km trails that form a survey ‘‘grid’’ with sample plots

regularly spaced at 1 km intervals (Figure S3). At the time of

writing PPBio and partners has established ten 25 km2 research

areas across Brazilian Amazonia. We included 7 of the 10 active

research areas in our analysis based on two criteria: (i) with an

established regular arrangement of sample plots (n = 30–31)

distributed along a trail system, 1 km distant from each other

(Figure S3), and (ii) with active research and data freely available

(http://ppbio.inpa.gov.br/sitios).

In addition to the regular sample plots, the RAPELD grids also

have ‘‘riparian plots’’ [3]. These riparian plots are installed

wherever a trail crosses a waterbody and are used to survey the

distinctive species found in riparian zones [30,31,32]. The distance

between riparian plots within grids is not standardized, and only

one grid (‘‘Ducke’’) has established riparian plots. Therefore, to

enable comparison between grids we derived the probable

locations of riparian plots within the other grids using standardized

GIS processes (Figure S4).

Data analysis
All statistical analyses were undertaken with the R language and

environment for statistical computing [33], using base functions

and functions available in the following packages: ‘‘ggplot2’’ [34],

‘‘gstat’’ [35], ‘‘mgcv’’ [36], ‘‘raster’’ [37], and ‘‘sp’’ [38].

We evaluated the adequacy of samples and their associated

spatially interpolated values across the random and active research

areas. Active research areas included three sample sizes (Table S1):

(i) the existing arrangement of regular 1 km interval plots (n = 30–

31), (ii) the same regular 1 km interval plots plus riparian plots

(n = 45–52), and (iii) to examine the expected improvements

generated by increasing sample size we also included locations if

plots were to be established at regularly spaced 500 m intervals

along the existing trails (n = 96),which also included the locations

of the existing 1 km interval regular plots. Within the randomly

selected areas, we simulated regularly arranged samples across a

wider range of sample sizes (n = 4, 8, 16, 30, 60, 120). As the

locations of the regular samples generated within each random

area can differ (depending on the starting point), metrics for the

samples and associated interpolations were generated for 10

iterations of each sample size within each random area. The mean

value of the metrics for samples and spatial interpolations from the

10 iterations was used in all subsequent analysis.

Figure 1. Distribution of seven active research sites within the Brazilian Amazon. Site locations (circles) are overlaid on a 30 arc-second
shaded relief map derived from mean altitude values [45] distributed by the U.S. Geological Survey (USGS) Earth Resources Observation & Science
(EROS) Center (http://topotools.cr.usgs.gov/gmted_viewer/). Histograms show the frequency distribution of SRTM altitude values (90 m resolution)
within the study sites, with counts (y-axis) grouped in 20 meter altitude bins (x-axis).
doi:10.1371/journal.pone.0106150.g001
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Inverse Distance Weighted (IDW) spatial interpolations were

calculated from the SRTM altitude values at the different sample

sizes within each of the random and active research areas.

Interpolations were generated for each area using a 90 m grid size

that corresponded approximately to that of the original SRTM

altitude values. The IDW approach was adopted as this spatial

interpolation technique can be used with small sample sizes

[9,22,26] and in our case provided similar results to Ordinary

Kriging and Generalized Additive Model (GAM) interpolations

(Figure S5, Figure S6).

To answer questions 1 and 2, the adequacy of samples and

associated spatial interpolations was evaluated using the following

methods. For question 1, we used the Kolmogorov-Smirnov (KS-

test) as a measure of sample representativeness [26]. This was done

by comparing the distribution of both sample and spatially

interpolated altitude values with the original SRTM altitude values

in both randomly selected and active research areas using the KS-

test. For question 2 we examined the interpolated values from

samples in random areas, using correlation as a measure of

similarity between sample and population (i.e. original SRTM

values) values, and the root mean square error (RMSE) to

represent the accuracy of parameter estimation.

For question 3, the thresholds in all metrics were evaluated

based on whether the parameter of interest reached stability and/

or the chosen level of precision [39]. This was achieved using

complementary approaches. Firstly, Generalized Additive Models

(GAMs) [36] were used to model trends in the response of the

different metrics to sample size and standard deviation (SD).

Secondly, to identify thresholds (i.e. break-points) where sample

size and SD influenced the responses we used the conditional

inference tree method [40,41], implemented in the ‘‘partykit’’

package [42]. Although various regression-tree methods are

available (e.g. CART, random forest, etc.) we assume that results

from different methods will be similar for simple cases such as ours.

Results

Sample and Interpolation Representativeness
Mean SRTM altitude within 565 km areas of the 5.06 million

km2 legal Brazilian Amazon was 159.5 m (range 0–1216 m).

Mean altitude in the randomly selected areas (159.3) was similar to

this overall mean, but the greatest mean value in the randomly

selected areas was lower at 683 m. Altitude heterogeneity (SD)

ranged from 0 to 466 across 565 km areas of the 5.06 million km2

legal Brazilian Amazon (Figure S1). However, 90% of areas had

SD values , = 40, which corresponds to a range in altitude of

<210 meters [mean of range values from the randomly selected

areas with SD of 40 (n = 7)]. Our sample of seven active research

areas (SD ranging from 4.8 to 40.2, Table S1) therefore represents

the meso-scale altitudinal heterogeneity found across an area of

approximately 5 million km2.

The Kolmogorov-Smirnov (KS) tests showed that a regular

arrangement of samples could represent the distribution of altitude

values within our study areas (Figure 2, Figure S7, Figure S8). For

the active research areas, the KS-test showed that the distribution

of altitude values in the samples from two areas [FLONA do

Amapá (n = 30), and Virua (n = 30 and n = 49)] were (marginally)

significantly different from the distribution of altitude values within

grids (Figure 2a, Figure S8). Although statistically different, visual

inspection of back-to-back histograms showed that even these

smaller samples (n = 30, n = 49), appeared to capture the

distribution of altitude values in these two areas with long-tailed

distributions i.e. differences appear to be caused by variation in the

distribution of the more extreme values (Figure S8).

Spatial interpolation: similarity and accuracy
Both sample size and standard deviation (SD) strongly

influenced the similarity and accuracy of spatial interpolations

(Figure 3). The similarity between interpolations and the original

altitude values increased rapidly with sample size (Pearson

correlation mean values increased from 0.35 to 0.57, at n = 4 to

n = 16 samples respectively) after which correlations continued to

increase but at a lesser rate, reaching a mean value of 0.78 at a

sample size of 120.

Thresholds
Conditional inference tree analysis revealed differences in the

influence of sample size and sample standard deviation on

thresholds (break-points) in sample accuracy (representativeness,

similarity and accuracy - Figures S9–S13). This analysis showed

that sample size was the most important determinant of sample

representativeness (KS-test p-values, Figure S9), with the first,

second and third splits all due to sample size. The first split of this

tree was at n = 16, grouping the smaller sample sizes (n = 4, 8, 16),

which, independent of SD, were less representative (lower p-

values) compared with the larger sample sizes (n = 30, 60, 120).

The GAM model (Figure 2a, p,0.00001, deviance explained

= 65.2%) showed that the sample KS-test p-values did not stabilize

within the range of sample sizes examined, but did stabilize at SD

values $9.

Generally, the representativeness of interpolated values showed

a similar pattern to sample values (Figure 2). This similarity was

also reflected in the first two splits of the interpolated KS-test p-

value classification tree (Figure S10), which were also based on

sample size, with the first split again at n = 16. Overall, 5 of the 9

sample KS-test tree inner nodes were based on sample size, and 5

of the 11 interpolation KS-test tree inner nodes were based on

sample size (p,0.001 for all sample and interpolation inner

nodes). However, GAM models reinforced differences between

sample and interpolated values, with interpolated values statisti-

cally representative (on average) even at the smallest sample size

(n = 4, Figure 2b, p,0.00001, deviance explained = 49.3%).

With respect to the similarity and accuracy of spatially

interpolated values, the conditional inference trees (Figures S11,

S12) agreed with GAM results (Figure 3), showing that sample size

was a more important determinant of correlations than for RMSE

values. The GAM model (Figure 3, p,0.00001, deviance

explained = 58.5%), showed that correlations started to stabilize

after n = 16 (increasing little after n = 60) and stabilized at SD

values .15. As was found for the KS-test p-values (both sample

and interpolation), the first split of the correlation classification

tree was at n = 16 (Figure S11), whereas the first split of the RMSE

tree was at SD = 19.77. The GAM model (Figure 3, p,0.00001,

deviance explained = 86.1%) showed that RMSE values stabilized

after n = 16, but continued to increase across the range of SD

values examined. Although sample size was not as important for

RMSE values, a sample size of 16 was also identified at the 3rd and

4th splits of the RMSE tree (Figure S12). Overall, 5 of the 10

correlation tree inner nodes were based on sample size, whereas

only 3 of the 11 RMSE tree inner nodes were based on sample size

(p,0.001 for all correlation and RMSE inner nodes).

The difference in the importance of sample sizes and SD for

correlations and RMSE was also confirmed by visual inspection

(Figure 3), which showed that RMSE values tended to increase

with SD at any given sample size, whereas this relationship was not

as clear for correlations. Although there was a significant

association between SD and interpolation similarity and accuracy,

visual inspection of the IDW estimate maps showed that the meso-

scale trends in altitude were represented well across the research
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grids (with SD values between 4 and 40) using a regularly arranged

sample size of 30 (Figure S13).

Discussion

Our findings indicate that a regular arrangement of 30 sparse

samples represent meso-scale altitude in 25 km2 Amazonian areas.

We also found that the associated interpolations are statistically

similar to values at a much more detailed resolution (<90 m). We

discuss these findings and their potentially wide reaching

applications in relation to obtaining samples necessary for

monitoring biodiversity changes.

Sample and Spatial Interpolation Representativeness
Accurate and unbiased samples are needed to enable derivation

of any of the myriad metrics used by researchers to examine

ecological patterns and processes and to monitor and predict

changes in biodiversity [1]. Our understanding of biological

diversity within tropical biomes usually comes from sparse samples

[1,3,4]. The continued debate regarding species richness [43],

perhaps the most commonly used indicator in studies investigating

biodiversity and conservation (not to mention ecological and

macroecological research) highlights how sample adequacy affects

conclusions even for the most simple biodiversity metrics.

Finding that regularly arranged samples are representative of

meso-scale altitude values was expected as this arrangement is

known to be efficient [10]. What was surprising was that even

relatively small sample sizes (n = 8) were statistically representative

(i.e. mean KS-test p value .0.05). However the considerable

variation around the mean values suggests that such low sample

sizes may not be generally reliable. This variation in sample

representativeness was only partly explained by differences in

sample size and standard deviation (65.2% of the GAM model

deviance explained). As shown by numerous previous studies

[9,10], it therefore seems likely that additional factors such as pre-

existing gradients and directionality (i.e. anisotropy) will also

influence sample representativeness [9].

A more detailed examination of the research grids showed that

statistical representativeness appeared to be strongly influenced by

the frequency distribution of the sample values. Samples from

research grids with longer tailed distributions (i.e. with ‘‘extreme’’/

‘‘unusual’’ values) were less representative. This finding was

Figure 2. Comparison of sample representation across 25 km2 of Amazonian forest. The sample representativeness of altitude values was
determined in two sets of 565 km sample areas [1286 randomly selected (rectangles) and seven active research areas (triangles)] across the Brazilian
Amazon. Within each area, the representativeness of (a) samples and (b) their corresponding IDW interpolations were evaluated. The distribution of
values was compared with that of the area altitude (SRTM DEM) values using the Kolmogorov-Smirnov (KS) test. Increasing p-values denote more
similar distributions (i.e. samples/interpolations are more representative). The blue lines (solid = randomly selected and dashed = active research
areas) and shaded areas are the mean value and 95% confidence intervals from a GAM model illustrating the trend in representativeness with
increasing sample size. The filled colors show the standard deviation (SD) of altitude values within each of the different sample areas. The black
dashed horizontal line shows a p-value of 0.05.
doi:10.1371/journal.pone.0106150.g002
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expected as it is widely recognized that studies focusing on rare/

extreme events/values require the development of specific sample

arrangements and/or analytic techniques [44,45]. Nevertheless,

visual examination of mapped values and the histograms

comparing sample and original distributions suggested that the

regular samples captured meso-scale patterns in at least some of

these statistically ‘‘unrepresentative’’ cases.

The mapped research grid interpolations also illustrated how

the statistical representativeness of the samples translated into

predicting the real-world local-scale (90 m) spatial patterns in

altitude. Indeed our findings suggest that a regular arrangement of

$4 samples can (on average) be considered as statistically

representative within the randomly selected areas. However, there

was considerable variation around the mean. This variation shows

that such small sample sizes do not necessarily translate into

samples that are appropriate for the detection of either local or

meso-scale patterns.

Spatial interpolation: similarity and accuracy
We show that regular meso-scale samples generate interpola-

tions representative of a response measured at the local scale

(90 m). Even at small sample sizes (,30) the interpolations were

accurate (mean RMSE ,20 m) and representative (mean KS-test

p value .0.05). However, correlations with the original SRTM

values were weak (r,0.5) at these smaller sample sizes. Addition-

ally the accuracy of interpolated samples was strongly dependent

on the sample standard deviation at all sample sizes. Such strong

dependence on sample standard deviation means that even with

the most intensive sampling (n = 120) there was a degree of

uncertainty in the accuracy of such local scale predictions in the

more heterogeneous areas (SD values greater than 10). While it is

clearly important to acknowledge such uncertainty, visual exam-

ination of the maps generated showed that interpolations from

sample sizes of 30 captured the meso-scale distribution in altitude

even in the more heterogeneous areas (SD.10).

The representativeness, similarity and accuracy of interpolated

values means that it is theoretically possible to compare metrics

derived from these interpolations with those obtained from any

other sample size/arrangement at similar scales that adequately

represent the variable of interest. The ability to generate accurate

interpolations also means that we are able to adopt the (typically

more powerful) statistics used for continuously sampled areas [9].

The use of interpolated values can therefore provide an option to

integrate/compare/contrast results from studies that adopt

different sample designs and sizes. As demonstrated by recent

reviews [46,47] and case studies [48], we would expect the

integration of results from different studies to generate substantial

improvements in relation to the insights and potential applications

of the data generated. Such improvements are also likely to

generate financial economies [46,48]. The economies arising from

the ability to integrate data from different sources are particularly

relevant in the case of payments for ecosystem services where

indicators and monitoring protocols are likely to vary spatially with

context and location and temporally with the emergence of future

threats [46,49,50,51].

Thresholds
Classification-tree analysis showed that sample sizes equal to or

greater than 30 were an important threshold for representative-

ness, accuracy and similarity. In combination with the GAM

Figure 3. Trends in interpolation adequacy with increasing sample size. IDW (Inverse Distance Weighted) models were used to interpolate
altitude (SRTM DEM) based on values from regularly distributed sample locations (n: 4, 8, 16, 30, 60 and 120) within 1286 areas (565 km) across the
Brazilian Amazon. Interpolation adequacy was evaluated using root mean square error (RMSE) and correlations calculated from the interpolated
values in relation to the original SRTM altitude values. Lines and shaded areas are mean values and 95% confidence intervals from GAM models
illustrating trends with increasing sample size. The filled colors show the standard deviation (SD) of altitude values within each of the different sample
areas.
doi:10.1371/journal.pone.0106150.g003
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results, these findings show that a regularly arranged sample size of

30 presents values that are representative of, accurate, and similar

to the original ‘‘population’’ (i.e. meso-scale altitude). The

thresholds identified broadly agree with established rules of thumb

for a sample size of 30 in spatial ecology [9] and a sample size of

50 as the computational minimum for geostatistical analysis [26].

But how representative are these sample size thresholds for

biodiversity monitoring? Our findings are based on the spatial

variation in altitude and the underlying assumption is that there

will be similar variation in meso-scale ‘‘biodiversity’’ patterns.

Defining biodiversity was one of the questions addressed in a

classic issue of the Philosophical Transactions of the Royal Society

B|Biological Sciences (July 29, 1994, vol. 345 (1311): http://rstb.

royalsocietypublishing.org/content/345/1311.toc). After 20 years,

the increasing number and complexity of biodiversity metrics (e.g.

[7,48]) suggests that we are not much closer to a unifying

definition for quantifying biodiversity. Lacking a clear under-

standing of how to quantify biodiversity means that extrapolating

conclusions from meso-scale altitude to meso-scale tropical forest

‘‘biodiversity’’ is challenging. However, to examine whether the

thresholds identified are likely to be generally applicable for

biodiversity monitoring we can compare the meso-scale variation

in altitude with variation in some of the species and community

responses documented from tropical forests.

Studies within one of the PPBIO research grids (‘‘Ducke’’)

provide a detailed multi-taxa assessment of biodiversity [52].

Although there are exceptions, previous studies (e.g.

[53,54,55,56]), and the more general overview provided in [3]),

show that meso-scale patterns in the vast majority of species and

communities vary at similar scales to altitude within this area

(altitude mean 6 SD (range): 91618.9 (53–127)). In other words, 2

to 3 fold variations in meso-scale richness and diversity are relatively

common within Ducke but 100 fold variations are rare. The fact

that variation in the community diversity of several groups is not

explained by topographic variation i.e. slope (see Table 1 of [52]), is

not necessarily critical in this case. The more important point is that

at meso-scales the spatial variation of species and communities is

often similar to or less than the variation in altitude [53,54,55,56].

Therefore, we can expect that the same sample size thresholds we

identified for representing altitude should also be representative for

quantifying numerous meso-scale biodiversity responses.

There are obvious limitations to the thresholds identified. We

only considered the sample representativeness in areas with a

standard deviation #56, corresponding to 95% of the legal

Brazilian Amazon. The thresholds identified are unlikely to be

applicable in areas where altitude varies more, such as the Andean

highlands. Although it is theoretically possible to establish regular

25 km2 sample grids in highly heterogeneous areas, this is unlikely

to be a cost effective approach in locations with strong preexisting

gradients/strata (e.g. highly heterogeneous topographic variation/

land cover types). In such situations we would expect that some sort

of stratified sample scheme should be the most cost effective [4,57].

Practical implications
But what is the optimum sample design for monitoring Amazon

biodiversity? The answer to this question is location and context

specific and therefore lies with individual researchers/project

managers. Within the context of biodiversity monitoring, study

designs must provide the most information for the lowest price

[1,4] i.e. meet statistical requirements and be practically and

logistically possible [1,4]. Some consider a regular arrangement to

be unnecessarily ‘‘demanding’’ in terms of sampling effort. For

example, Gardner [4] highlights that ‘‘the major disadvantage of a

uniform-grid approach is that it demands a high level of sampling

effort’’, but the same author describes a stratified-random

approach using considerably more effort than 30 sample points

[57]. It is clear that a regular design would probably cost more to

implement than the stratified approach to answer the questions in

[57]. But the efforts described in [57] suggest that a sample size of

30 across a 25 km2 area is well within the logistic and financial

‘‘norm’’ of Amazon research projects. An often overlooked benefit

of standardized samples that adequately represent the target

response is that it is possible to directly compare and contrast

values of interest. For example, it is possible to directly compare

intuitive and easily communicable metrics, such as number of

individuals (N) or number of species (S) to represent biodiversity.

The ability to communicate and inform results is one of the

advantages of standardized samples that is, however, rarely

included in comparisons of sampling designs [1].

In cases where strata can be identified (the logical pre-requisite

for stratification), there will probably be sufficient information (e.g.

describing magnitude of expected response, magnitude of possible

confounding effects) to develop robust sampling designs to meet

research objectives. Land use change coupled with the presence of

multi-jurisdictional landscapes, (where it is often impossible to

assume a regular design as some land-owners will not permit

access (T. Gardner pers. com.)) means that there is a large area

within the legal Brazilian Amazon where a 25 km2 regular

sampling grid is unlikely to be practical. Yet at the same time,

Amazon deforestation is decreasing and there remain vast tracts of

forest cover across the Brazilian Amazon [58]. For example the

Amazon Region Protected Areas (ARPA) program is a network

that includes over 90 protected areas, and covers 51 million

hectares [59]. Therefore, there remains a substantial area where

knowledge to inform sample stratification for biodiversity moni-

toring is unavailable (e.g. unknown future threats, poorly described

response/predictor variables, multiple response variables) and

stratification is therefore unlikely to be a viable option [3,27,28].

We are not advocating one arrangement over another, and are

merely demonstrating the adequacy of regularly arranged sample

sizes. Indeed, a regular arrangement is unlikely to be suitable for a

variety of relevant ecological questions, such as studies examining

rare species or the density of large canopy trees [60]. However, it is

a relatively simple task to develop more detailed studies using a

subsample of the logistics provided by a broader scale sample

arrangement. For example, many researchers use only a fraction

of a 25 km2 PPBio grid to conduct a wide variety of relevant

studies [3]. It is also worth noting that a recent study showed that

common indicators are more likely to be appropriate compared

with rare species indicators within the context of monitoring

biodiversity for environmental service payments [5].

Sommerville et al. (2011) [5] present a framework for effectively

monitoring environmental services where it is necessary to make

three major decisions: (i) which indicators to monitor (e.g. a species

of concern/threats/positive actions), (ii) how to monitor the

chosen indicators (e.g. ground based, remote sensing or a

combination) and (iii) how to use the monitoring results to

determine payments (e.g. presence-absence of an indicator/the

trend of the indicator over time/detecting differences between

monitored sites/achievement of targets). These choices will dictate

the most adequate sampling design for monitoring biodiversity

within any given context/locality. Decades of research present

detailed evaluations of how to derive spatially optimal sampling

strategies [10,61,62,63] and rather than seek to optimize for the

general ‘‘biodiversity monitoring’’ case (which never exists) we

show that metrics obtained from a regular sample are likely to be

both widely applicable and comparable across <5 million km2 of

the legal Brazilian Amazon.
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Conclusions

Although not all biodiversity indicators are directly related to

altitude in the Amazon, in the majority of situations, it will at least

be necessary to model and/or control for the effects of altitude in

both within and between site comparisons. The ability to represent

meso-scale altitudinal variation with a regular arrangement of 30

samples provides strong support for the idea that such an

arrangement and sample size will be adequate for a wide range

of present and future biodiversity monitoring challenges. Knowing

that samples/interpolations provide a reasonable representation of

meso-scale altitude values means that we are able to reliably use

such samples to examine whether within and between-site

differences in patterns of biodiversity indicators are or are not

driven by altitudinal/topographical variation. The capability to

compare interpolated values with those derived from other

representative sampling designs is also likely to facilitate both

comparison across studies and communication between research-

ers and managers.
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