CARACTERÍSTICAS DA MADEIRA E DA POLPA KRAFT NÃO BRANQUEADA DE Eucalyptus deglupta BLUME INTRODUZIDO NA REGIÃO DE MANAUS - AM.

Francisco Juvenal Lima Frazão (*)

RESUMO

O objetivo deste trabalho foi comparar as características da madeira e das propriedades da polpa de E. deglupta Bl., tendo como referência o E. saligna. As características dimensionais das fibras e dos elementos de vasos da madeira em estudo apresentaram valores superiores aos da madeira de comparação. A constituição química da madeira de E. deglupta demonstrou menores valores para as solubilidades e elementos fundamentais. O E. deglupta se caracterizou por apresentar menor densidade básica e maior consumo de madeira por unidade de peso de celulose produzida. Foram obtidas polpas kraft das duas espécies e os melhores valores para resistência ã tração, alongamento, arrebentamento e rasgo foram mostrados, inicialmente, pela polpa de E. deglupta. Entretanto, para dobras duplas, resistência ã passagem de ar e densidade aparente, o E. deglupta apresentou resultados sempre inferiores aos do E. saligna.

INTRODUÇÃO

No Brasil, a madeira do gênero Eucalyptus se constitui como uma das principais fon tes de matéria-prima para a indústria papeleira, sendo responsável por 65% da celulose produzida pela indústria nacional. Apesar desta enorme aceitação do gênero, apenas um número reduzido de espécies são utilizadas a nível comercial, havendo sempre um grande interesse pela introdução de novas espécies, que atendam às exigências do setor industrial em qualidade e produção de madeira.

Uma espécie que tem merecido atenção tanto na Ásia e África tropical, como também na América Central e do Sul, onde existem plantios experimentais bem sucedidos, é o E. deglupta Bl. É uma espécie que adapta-se bem em região de clima tropical úmido de temperatura média anual de 24 - 26°C, precipitação 2500 - 4000 mm e regime de chuvas distribuído uniformemente durante o ano, cuja região compreende, no Amazonas, ao noroeste do Estado (Golfari & Neto, 1970). No município de Manaus, em um plantio realizado com o objetivo de produzir sementes, o E. deglupta Bl. proveniente de Papua, Nova Guiné, tem se

^(*) Instituto Nacional de Pesquisas da Amazônia.

destacado por um excelente incremento volumétrico (Fernandes, 1983). Na região do Jarí bons resultados têm sido apresentado pelo E. deglupta Bl., comparando com outras espécies exóticas, quanto ao Índice de sobrevivência e desenvolvimento em altura, diâmetro e volume (Batista & Borges, 1983). É destacado por Grijpma, 1969, pela importância que a espécie poderá representar para os trópicos úmidos da América Latina, em virtude de seu rápido crescimento e diversidade de usos de sua madeira.

O E. deglupta B1. é uma espécie relativamente bem estudada, visando seu aproveita mento na produção de celulose e algumas referências sobre a qualidade de suas celuloses podem ser encontradas na literatura (Koeppen, 1958; Phillips & Logan, 1976; Foelkel et al., 1978 & Logan et al., 1984). Por suas boas qualidades silvicuturais que vêm sendo demonstradas em nossa região, o E. deglupta B1. poderá torna-se uma espécie promissora para reflorestamento em larga escala e dentre outros usos, possivelmente para futura utilização na produção de celulose, conforme já vem sendo considerado em países do sudeste Asiático e Nova Guiné.

O presente trabalho teve como finalidade estudar algumas características da madei ra e propriedades da polpa kraft não branqueada de **E. deglupta** Bl. Os resultados foram comparados com os obtidos de **E. saligna**, uma das espécies mais utilizadas na produção de celulose kraft na indústria nacional.

MATERIAL E METODOS

Neste estudo foram utilizados o Eucalyptus deglupta Blume, proveniente de um plantio experimental para produção de sementes, com 5 anos e 7 meses de idade, quando do abate, localizado em Manaus - AM., desenvolvido pelo Departamento de Silvicultura Tropical do Instituto Nacional de Pesquisas da Amazônia (INPA) e o E. saligna, procedente de plantações da Fábrica Simão em Jacareí - SP., que foi analisado para efeito de comparação. As árvores foram seccionadas em toras, descascadas manualmente e transformadas em cavacos, através de um picador laboratorial Appleton. Após a classificação dos cavacos em classificador sueco Vibro-Energy Separator, foram secos ao ar e armazenados em sacos plás ticos para uniformização e conservação do teor de umidade.

Para a determinação das características anatômicas foi feita a individualização das fibras e dos demais elementos anatômicos, tratando-se os pequenos palitos de madeira com solução constituída de ácido acético glacial (50%), água oxigenada 130V (30%) e água destilada (20%), em estufa a 60°C. Foram realizadas 200 medições para cada característica e determinadas relações consideradas importantes entre as dimensões fun damentais das fibras. As análises químicas foram realizadas segundo normas da ABCP, à exceção da determinação do teor de celulose que foi realizado pelo método Kürschner e Hoffer. A densidade básica foi determinada de acordo com a norma TAPPI T 258 os ~ 76.

Para a deslignificação das madeiras foi empregado o processo kraft. Os cozimentos foram realizados em digestor rotativo, 1,5 rpm, de aço inoxidável, com capacidade de 50 litros, aquecido eletricamente, dotado de sete tubos-reatores com capacidade individual Frazão

de dois litros. Cada cozimento foi realizado com duas repetições. Os níveis de álcalis ativos adotados variaram de 11 à 18% como $\mathrm{Na_20}$, para analisar o desempenho de deslignificação das madeiras. Os outros parâmetros de cozimentos mantidos constantes foramos seguintes: sulfidez, 25%; atividade, 100%; temperatura, 170°C; tempo até temperatura, 100 minutos; tempo na temperatura, 50 minutos; relação licor madeira, 4:1 e cavacos,300g a.s. Após os cozimentos os cavacos foram submetidos a uma lavagem preliminar e posteriormente desintegrados em "Allibe Pulper" e as polpas obtidas foram classificadas em depurador Brecht Holl, utilizando tela com fendas de 0,2mm. Para a determinação das propriedades físico-mecânicas foram escolhidas as polpas que apresentaram o grau de deslignificação de 20,5 \pm 0,5. A moagem das polpas para desenvolvimento de resistências foi efetuado em moinho centrifugal Jokro à 6% de consistência. A confecção das folhas foi realizada em formador Köthen-Rapid e as propriedades físico-mecânicas foram determinadas segundo normas da ABCP. Os valores médios das propriedades foram graficamente interpolados para os graus de moagem pré-estabelecidos 20, 30, 40, 50 e 60° SR.

RESULTADOS E DISCUSSÃO

Dimensões das fibras e dos elementos vasculares

As dimensões das fibras e dos elementos vasculares das madeiras de E. deglupta e E. saligna estão apresentadas no Quadro 1. Numa análise geral, observa-se que as dimensões das fibras e dos elementos vasculares da madeira de E. deglupta foram superiores aos da madeira de E. saligna e comparáveis aos valores apresentados por Redko (1983).0s valores para o comprimento e diâmetro do lúmen das fibras superaram aos da madeira de comparação, cerca de 15,5% e 4,9%, respectivamente. No que diz respeito aos parâmetros que relacionam as dimensões fundamentais das fibras, verifica-se que os coeficientes de flexibilidade foram iguais para as duas espécies, enquanto que o índice de Runkel e a fração parede resultaram, também, em valores muito próximos com ligeira superioridade para os de E. deglupta. Com relação ao índice de enfeltramento, as fibras da madeira de E. deglupta apresentaram maior valor que as de E. saligna.

O número e dimensões dos elementos vasculares são importantes na utilização da ma deira para a produção de polpa, tendo em vista que as propriedades de superfície dos pa péis feitos com folhosas dependem da natureza e da compatibilidade dos mesmos com as fi bras que o formam. O comprimento médio dos elementos vasculares da madeira de E. deglupta foi superior ao da madeira de E. saligna (0,50 e 0,40 mm, respectivamente). Valores semelhantes para largura foram apresentados pelas duas espécies. O maior comprimento apresentado pelo E. deglupta, possivelmente, não se tornaria um inconveniente na utilização de sua polpa, haja vista que o E. deglupta da região do Jarí, com caracterís ticas semelhante, tem apresentado resultados físico-mecânicos bastante promissores, Redko (1983).

Quadro 1. Características dimensionais das fibras e dos elementos vas culares das madeiras de E. deglupta e E. saligna.

Dimensões	E. deglupta	E. saligna
FIBRA	S	
Comprimento, mm		
. médio	1,08	0,91
. desvio-padrão	0,22	0,17
. coeficiente de variação, %	0,20	0,19
Largura, μm		
. mědia	18,58	17,53
. desvio-padrão	2,95	2,48
. coeficiente de variação, %	15,93	14,16
Lûmen, μm		
. médio	9,66	9,18
. desvio-padrão	2,25	2,13
. coeficiente de variação, %	23,29	23,26
Espessura da parede, μm		
. média	4,46	4,16
. desvio-padrão	1,07	1,18
. coeficiente de variação, %	23,99	28,36
Coeficiente de flexibilidade, %	52	52
Indice de enfeltramento	58	52
Fração parede, %	48	47
Indice de Runkel	0,92	0,91
ELEMENTOS DE	VASOS	
Comprimento, mm		
. médio	0,50	0,40
. desvio-padrão	0,11	0,01
. coeficiente de variação, %	21,50	23,96
Largura, mm		
. média	0,20	0,19
. desvio-padrão	0,05	0,05
. coeficiente de variação, %	28,84	24,74

Composição química e densidade básica das madeiras

Os resultados médios das análises químicas e das densidades básicas das madeiras são mostrados no Quadro II.

Os valores encontrados para as solubilidades das madeiras em diferentes solventes

foram ligeiramente inferiores para o E. deglupta. Os menores teores de celulose e pentosanas foram apresentados pelo E. deglupta, os quais, associado aos seu teormais elevado de lignina, que deverá ser particularmente significativo nos resultados de polpação pela sua maior dificuldade de deslignificação, contribuirão para que as polpas de E. deglupta apresentem rendimentos inferiores aos de E. saligna. Apesar do teor de cinzas do E. deglupta ter sido superior ao da madeira de comparação, provavelmente, não viria a causar problemas no processo de recuperação do licor negro. Com relação à densidade básica, o E. deglupta apresentaria um maior consumo específico de madeira por tonelada de celulose produzida.

Quadro II. Composição química e densidade básica das madeiras de E. de glupta e E. saligna.

Espé	ecies			
E. deglupta	E. saligna			
1,27	2,63			
	3,23			
	16,67			
2,37	2,74			
50,75	52,24			
17,98	19,12			
24,54	20,76			
0,38	0,16			
0,404	0,446			
	1,27 3,14 14,54 2,37 50,75 17,98 24,54 0,38			

Deslignificação das madeiras

Os valores médios referentes às características de deslignificação das madeiras encontram-se no Quadro III. O E. deglupta foi a espécie que apresentou maior dificulda de de deslignificação. Para a obtenção da polpa de número kappa próximo de 20, por exem plo, a necessidade de álcali ativo foi 2% superior para a madeira de E. deglupta.Na fai xa dos limites de álcalis ativos analisados, o E. deglupta apresentou o maior rendimen to total, apenas quando foi utilizado o nível de 11% de álcali ativo. Em termos de rendimento depurado, os resultados encontrados para o E. deglupta mostraram-se inferiores aos obtidos para o E. saligna. Os menores rendimentos apresentados pelo E.deglupta podem ser explicados pelos menores teores de celulose e pentosanas e maior teor de lignina da madeira. Com relação ao teor de rejeitos, nos níveis iniciais de álcalis (11 à 14%) o E. deglupta foi a espécie que resultou em maiores percentagens. A partir de 15% de álcali ativo, praticamente não houve diferença nos percentuais obtidos.

Quadro III. Influência do álcali ativo na polpação das madeiras de E. deglupta e E. saligna.

	Alcali ativo Rendimento, %			Teor de rejeitos	Nūmero	
	%	total	depurado	%	kappa	
E. deglupta E. saligna	11	69,3 57,3	20,1 38,1	43,2 19,2	74,8 47,9	
E. deglupta E. saligna	12	51,4 57,4	34,7 52,9	16,7 4,5	47,5 30,2	
E. deglupta E. saligna	13	51,3 53,2	47,4 51,0	3,9 2,1	27,1 23,8	
E. deglupta E. saligna	14	48,8 51,1	46,4 49,9	2,4	23,6	
E. deglupta E. saligna	15	46,2 49,4	45,2 48,6	1,0 0,8	21,4 19,1	
E. deglupta E. saligna	16	44,9 48,1	44,4 48,1	0,5	20,7	
E. deglupta E. saligna	17	43,6 46,9	43,5 46,8	0,1 0,1	18,1	
E. deglupta E. saligna	18	42,3 45,9	42,0 45,9	0,3	18,1 16,6	

Os valores referentes ao consumo de madeira por tonelada de celulose são mostrados no Quadro IV.

Quadro IV. Consumo específico por tonelada de celulose absolutamente seca (a.s.).

Consumo específico	E. deglupta	E. saligna
m³ soʻlido/t poʻlpa a.s.	5,51	4,39

O consumo de madeira por tonelada de celulose é uma importante característica que relaciona a densidade básica da madeira e o seu respectivo rendimento em celulose depurada. O E. deglupta foi a espécie que apresentou o maior consumo específico volumétrico, o que deve-se ao fato de ser menos denso que o E. saligna.

Propriedades físico-mecânicas das polpas

Os Quadros V e VI apresentam os resultados médios encontrados para as propriedades físico-mecânicas das polpas.

0 E. **deglupta** foi a espécie cuja polpa exigiu um maior tempo de refino para um me \underline{s} Frazão

mo grau de moagem, o que, conseqüentemente, implica em maior consumo de energia. Amaior facilidade de moagem apresentada pela polpa de E. saligna deve estar relacionada, possi velmente, com o teor mais elevado de hemiceluloses na madeira e com as características dimensionais das fibras (especificamente espessura da parede).

A resistência à tração, expressa como comprimento de auto-ruptura, o alongamento e o índice de arrebentamento da polpa de E. deglupta mostraram-se inicialmente superior, havendo entretanto, uma inversão de valores com o aumento do tempo de moagem, visto que por volta de 40 OSR, por exemplo, o E. saligna já demonstrava melhores valores para as propriedades em análise. Uma explicação para esse comportamento apresentado pela polpa de E. deglupta, em níveis mais baixos de moagem, é que sua polpa apresentava um maior grau de coesão interfibrilar causado, possivelmente, por um melhor desempenho nessa eta pa de moagem, uma vez que as melhorias nas referidas propriedades foram mais pronunciadas nessa fase ou pelo fato da espécie possuir fibras de maior comprimento médio,os qua is exigiram um maior esforço para se separarem da estrutura do papel. Por outro lado, os valores mais baixos de resistência apresentados com a intensificação da moagem, pode ter sido motivado pela maior exigência em álcali na polpação, com conseqüentes danos e eliminação de carboidratos, principalmente hemiceluloses, que, por conseguinte, devemter contribuído para uma moagem mais fenta.

Com relação a resistência ao rasgo foi verificado, também, melhores valores para a polpa de E. deglupta nos graus iniciais de moagem, alcançando seu valor máximo a 50 OSR, enquanto a de E. saligna a 60 OSR, ainda demonstrava uma tendência de crescimento. As propriedades de resistência ao dobramento e resistência à passagem de ar foram igual mente superiores para a polpa de E. saligna, o que pode ser atribuído, provavelmente, a uma melhor homogeneidade de suas folhas.

Em vista de alguns resultados inferiores encontrados para o E. deglupta, uma possível objeção ao uso de sua polpa poderia estar relacionada com seu rendimento relativa mente baixo. Este importante fator conduz a um sério problema econômico, que é a maior exigência da madeira por unidade de peso de polpa. Com relação às propriedades físico-mecânicas, a polpa da madeira de E. deglupta apresentou resistências aceitáveis.

Quadro V. Valores médios das propriedades físico-mecânicas da polpa de E. deglupta Bl.

Propriedades .	OSR					
	20	30	40	50	60	
Tempo de moagem, min.	14	38	48	59	85	
Auto-ruptura, km	4,87	6,60	6,92	7,15	7,60	
Alongamento, %	1,00	1,45	1,50	1,93	2,40	
Índice de arrebentamento	16,90	33,00	37,30	42,15	50,05	
Índice de rasgo	72,00	100,5	104,0	106,5	104,9	
Dobras duplas Resistência à passagem de	7	14	16	69	130	
ar, s/100 cm ³	1,6	3.3	3,6	8.2	23,3	
Densidade aparente, g/cm³	0,566	3,3 0,612	0,625	0,645	0,680	

Quadro VI. Valores médios das propriedades físico-mecânicas da polpa de E. saligna.

Propriedades	OSR					
	20	30	40	50	60	
Tempo de moagem, min.	09	32	41	55	81	
Auto-ruptura, km	4,05	6,28	7,62	8,30	9,02	
Alongamento, %	0,80	1,40	1,58	2,17	2,58	
Indice de arrebentamento	11,90	30,06	36,90	48,20	60,20	
Índice de rasgo	60,00	91,80	101,0	106,5	111,0	
Dobras duplas	6	42	100	161	206	
Resistência à passagem de						
ar, s/100cm³	2,0	6,9	17,1	26,2	140,0	
Densidade aparente, q/cm³	0,590	0,626	0,647	0,666	0,687	

SUMMARY

In this study the papermaking potencial of E. deglupta Bl. is compared with that of E. saligna. Anatomical and chemical characteristics were studied along with wood density. In the study of delignification E. deglupta required more alkali for the same kappa number. In early stages of beating pulp from E. deglupta showed better values of tearing. However for folding, resistance to air flow and apparent density E. deglupta consistently showed results inferior to those of E. saligna.

Referências bibliográficas

- Batista, M. P. & Borges, J. F. 1983. Avaliação do crescimento de quatro espécies exóticas, na região do Jarí, Pará. In: Congresso Latino-Americano de Celulose e Papel, 3., São Paulo, v. 1. p. 1 15.
- Fernandes, N. de P. 1983. O desenvolvimento do Eucalyptus deglupta no municipio de Manaus. Boletim do Engenheiro Florestal, Manaus, 1(2): 1 6, maio/junho/julho.
- Foelkel, C.E.B.; Zvinakevicius, C.; Andrade, J. R. de; Kato, J.; Sobrinho, J. M. 1978. Eucaliptos tropicais na produção de celulose kraft. **In: Congresso Anual da ABCP**, 11., São Paulo. p. 5 - 12.
- Golfari, L. & Pinheiro Neto, F. A. 1970. Escolha de espécies de eucalipto potencialmente aptas para diferentes regiões do Brasil. Brasil Florestal, São Paulo, 1(3): 17 38, julho/setembro.
- Koeppen, A. von 1958. Pulping studies on Eucalyptus deglupta B1., Bruguiera parviflora Wright and Arn., Avicennia marina (Forsk.) Vierh. Tappi, Atlanta, 41(8): 460-464.
- Logan, A. F.; Phillips, F. H.; Willians, M. D.; Eddowes, P. J. 1984. Pulpwood potencial of some fast growing tropical hardwoods. Appita, 37(5): 391 99. (march).
- Phillips, F. H. & Logan, A. F. 1976. Papua New Guinea hardwoods: Future source of raw material for pulping and papermaking. Appita, 30(1): 29 40. (july).
- Redko, B. V. P. 1983. Vasos de Folhosas: Eucalyptus deglupta, Eucalyptus urophylla, Gmelina arborea. In: Congresso Anual da ABCP, 16, São Paulo, v. 4. p. 1169 1194.

(Aceito para publicação em 25.03.1988)