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Abstract

Background: Matrix models are widely used to study the dynamics and demography of populations. An important but
overlooked issue is how the number of individuals sampled influences estimates of the population growth rate (l)
calculated with matrix models. Even unbiased estimates of vital rates do not ensure unbiased estimates of l–Jensen’s
Inequality implies that even when the estimates of the vital rates are accurate, small sample sizes lead to biased estimates of
l due to increased sampling variance. We investigated if sampling variability and the distribution of sampling effort among
size classes lead to biases in estimates of l.

Methodology/Principal Findings: Using data from a long-term field study of plant demography, we simulated the effects of
sampling variance by drawing vital rates and calculating l for increasingly larger populations drawn from a total population
of 3842 plants. We then compared these estimates of l with those based on the entire population and calculated the
resulting bias. Finally, we conducted a review of the literature to determine the sample sizes typically used when
parameterizing matrix models used to study plant demography.

Conclusions/Significance: We found significant bias at small sample sizes when survival was low (survival = 0.5), and that
sampling with a more-realistic inverse J-shaped population structure exacerbated this bias. However our simulations also
demonstrate that these biases rapidly become negligible with increasing sample sizes or as survival increases. For many of
the sample sizes used in demographic studies, matrix models are probably robust to the biases resulting from sampling
variance of vital rates. However, this conclusion may depend on the structure of populations or the distribution of sampling
effort in ways that are unexplored. We suggest more intensive sampling of populations when individual survival is low and
greater sampling of stages with high elasticities.
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Introduction

Matrix models [1,2] are an important tool used by ecologists

to study the demography of structured populations and for

conducting population viability analyses. They are flexible, readily

applicable to a diversity of life-history strategies, and there is a

broad body of literature describing their construction, interpreta-

tion, and limitation reviewed in [3,4]. However as a recent review

by Doak et al. [5] cogently summarizes, they are data-hungry

models requiring detailed estimates of birth, death, reproduction,

and other vital rates. When the number of individuals used to

estimate vital rates is low, the resulting vital rates–as well as

estimates of variances and covariances among them–can be

biased. Because biased vital rates can lead to inaccurate

projections of the population growth rate (i.e., l), there has been

an upsurge in studies exploring alternative sampling designs for

demographic studies [5–7].

Nevertheless, even unbiased estimates of vital rates do not

ensure unbiased estimates of the population growth rate. This is

because l is the dominant eigenvalue of the transition matrix [2],

and hence a nonlinear function of the underlying vital rates (i.e.,

l̂= f(v1,v2,…,vn), where the vi are the n vital rates and f is a

nonlinear real-valued function). As for other nonlinear functions

describing ecological processes e.g., [8,9], the mathematical

theorem known as Jensen’s inequality [10] implies that variance

in vital rates–even those that have been accurately measured–will

bias estimates of l. The amount and direction of this bias depend

both on the strength of the nonlinearity of the relationship

between l and the vital rates, and on the variance of the vital rates

themselves.

Variance in vital rates can arise from two sources. The first of

these is process variance, which results from real variation in the

population over space or time [11–13]. The second source is

sampling variance, which is a result of studying a sample rather than
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the entire population. Several studies have used Jensen’s Inequality

to predict potential biases in l resulting from process variance e.g.,

[14,15], and methods for dealing with process variance, especially

over time, are well-developed [16]. While there are also methods

that attempt to separate sampling variance from the total observed

variance in vital rates [17,18], the potential for sampling variance

to bias estimates in l has received limited attention. Houllier et al.

[19] used analytical approaches and stochastic simulations to test

for biases resulting from variance of the matrix elements, while

Usher [20] derived analytic solutions for both Leslie matrices and

more general models. In general, these studies found that biases in

estimates of l were small–usually less than 0.5%. However, the

potential for sampling variance to bias estimates of l has yet to be

investigated for matrix models in which organisms are capable of

regressing into smaller size classes. These models are extremely

common–they represent the demography of organisms ranging

from plants to marine invertebrates e.g., [12,21].

Jensen’s Inequality would lead one to predict that even when

the estimates of the vital rates are accurate, small sample sizes will

lead to biased estimates of l as a result of increased sampling

variance. To understand why, one must first understand how this

variance is modeled in demographic studies. Lower-level vital rates

sensu [4] are often modeled as binomial random variables. The

binomial distribution, which assumes homogeneous vital rates

among individuals within a stage class, has a higher variance for a

given mean value than a model with heterogeneous vital rates

[22]. Therefore, the binomial distribution is a conservative model

for the sampling process. The sampling variance of these binomial

vital rates is:

s2
ŝsi
~Var ŝsið Þ~

si 1{sið Þ
ni

ð1Þ

where ni is the number of individuals in class i in the sample, and si

is the true value of the vital rate [23]. Therefore, sampling

variation of a binomial vital rate is maximized when the true rate

is equal to 0.5. For estimates of fecundity, such as the number of

offspring an individual produces given that it reproduces at all, the

variance is:

s2
f̂fi
~Var f̂fi

� �
~

s2
i

ni

ð2Þ

where fi is the fecundity of individuals in class i and si
2 is the true

variance of the fecundity among individuals in class i; ni is defined

as above. Thus, as the variation of the true fecundity increases, so

does the variation of the estimated fecundity. Furthermore, as

sample size decreases these sample variances increase. This has the

net effect of biasing estimates of l.

We used stochastic simulations to determine if sampling

variance biased estimates of l and how these biases varied with

the sample size used to construct matrix models. Because the

distribution of individuals among a population’s size classes has

been shown to influence the outcome of demographic analysis [5–

7], we also considered the potential for synergistic effects of sample

size and population structure on estimates of l and potential biases

in these estimates. Our simulations were conducted using multi-

year demographic data collected to elucidate the population

dynamics of Amazonian understory herb Heliconia acuminata

(Heliconiaceae) [24,25]. Using annual transition matrices con-

structed with six years of demographic data from 3842 plants, we

addressed three questions. First, does the sampling variance of two

key vital rates, survival and fecundity, bias estimates of population

growth rates? To address this question, we compared the ‘‘true’’

growth rate of the total study population (hereafter, l) with the

growth rates of subpopulations composed of 25–200 randomly

selected individuals (hereafter, l̂). Second, are the patterns of bias

influenced by population structure? We conducted our simulations

with two different population structures. First, we used a uniform

distribution of individuals among size classes (i.e., equal numbers

of individuals in all size classes), which has been put forward as the

optimal sampling distribution for demographic studies [7]. We also

used a distribution that reflects the biological structure of many

populations in the field, known as the ‘‘inverse J distribution’’

[24,26]. An ‘‘inverse J distribution’’ contains fewer stage i+1

individuals than stage i, such that a histogram of stage classes in a

sample is a reflected ‘‘J’’ shape. Finally, what range of sample sizes

is typically used to parameterize matrix models of plant

demography, and how do these sample sizes compare with those

at which bias in estimates of l becomes negligible?

Results

Does the sampling variance of two key vital rates,
survival and fecundity, bias estimates of l?

As the sample sizes used to calculate vital rates decreased, l̂
increasingly overestimated l (maximum bias = 16.61%632.4 SD;

Figure 1). This maximum bias occurred when simulating an

inverse-J sampling distribution with 25 individuals and 0.5 survival

probability. However, the observed bias became negligible as the

rates of individual survival or sample sizes increased. For instance,

using 50 individuals to estimate vital rates from a population with

a mean survival probability of 0.5 resulted in a mean bias of

6.61%618.65 SD (Figure 1a), while increasing the survival rate to

0.8 resulted in a mean bias of only 1.88%68.55 SD (Figure 1b).

The coefficient of variation (CV) of fecundity, which increased up

to 32-fold in the different scenarios we modeled, did not bias l̂ in

any of our simulations.

Are the patterns of bias influenced by population
structure?

The amount of bias increased when simulations were run with a

more realistic inverse-J population structure than when using

equal numbers of individuals in all stage classes (8.08%620.70 SD

vs. 5.14%616.22 SD respectively when sampling 50 individuals

when survival = 0.5; 2.33%69.32 SD vs. 1.43%67.67 SD when

survival = 0.8; Figure 1). This result was qualitatively similar for all

combinations of survival and sample size.

What sample sizes are used to parameterize matrix
models of plant demography, and how do these
compare with those at which bias in estimates of l
becomes negligible?

Our literature review resulted in 28 studies of perennial herbs,

16 of trees, 9 of shrubs, and 15 studies of other plant types (e.g.,

grasses, geophytes, forbs; Appendix S1). Of these 68 studies,

however, we were only able to determine the number of plants

that had been used to parameterize the matrix models in 52

(Table 1). Studies of perennial herbs used fewer individuals than

those of trees. Approximately 12% of the studies on perennial

herbs used fewer than 100 individuals (summed across all stage

classes), and only 25% of studies were based on 500 or more

individuals (range: 30-4963). The ‘other’ category had the largest

proportion of studies with fewer than 100 individuals (22%;

Table 1).

Sample Size and Matrix Models
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Discussion

Our results demonstrate that biased estimates of l can result

from small sample sizes, as predicted by Jensen’s Inequality. This is

not because estimates of vital rates based on small sample sizes are

biased. Rather, it is because small sample sizes can act in concert

with low survival rates to increase sampling variation. This

increase, combined with the nonlinear relationship between l and

the vital rates, results in an overestimation of the population

growth rate. However our simulations also demonstrate that these

biases rapidly become negligible with increasing sample sizes and

as survival increases. The precise sample size at which bias

diminishes will obviously vary between species, and additional

studies with other demographic datasets are needed to evaluate the

generality of these results. However, because Heliconia acuminata’s

population and elasticity structure is common to many long-lived

plants [27,28], we believe the qualitative conclusions of our study

will apply to other perennial plant species.

Interestingly, we also found the magnitude of the bias in l̂ was

influenced by the structure of the population being sampled. The

increase in bias observed when sampling with the more realistic

‘‘inverse J’’ distribution has important implications or the design of

demographic studies. Using a novel analytical approximation,

Gross [6] found that sampling more intensively those stages to

which l was more sensitive increased the precision of estimates of l.

In contrast, Münzbergová and Ehrlén [7] conducted simulation

studies based on published demographic data and concluded that

sampling equal numbers of individuals from different size class

generally provided the most precise estimates. Although our

simulations were not designed to resolve this seeming contradiction,

we do note that H. acuminata population growth is especially sensitive

to changes in the survival of individuals in the larger stage classes

while being relatively robust to changes in fecundity [24]. Sampling

from a population using the more realistic inverse J-distribution

therefore increased the sampling variance of the demographically

‘important’ vital rates (e.g., survivorship of larger plants) and

decreased the sampling variance of the less ‘important’ vital rates.

Hence, our results suggest that sampling more individuals from

stages whose vital rates have larger elasticity values–as recommend-

ed by Gross [6]–may not only increase the precision of estimates of

l, it may also increase their accuracy sensu [29].

In light of our results, it appears that most studies of plant

demography we reviewed have sample sizes large enough to

overcome potential biases resulting from sampling variance.

However, there are clearly cases in which small sample sizes are

unavoidable, most notably those in which species are elusive e.g.,

[30] or rare e.g., [31]. In these cases, researchers may benefit from

modeling vital rates to improve precision of vital rate estimates

[32,33] or using data from closely related species [5,34].

Despite the widespread use of matrix models in ecology and

conservation, studies evaluating alternative sampling designs remain

limited. Our results suggest that for many of the sample sizes used in

demographic studies (Appendix S1), matrix models are probably

robust to the biases resulting from sampling variance of vital rates.

However, this conclusion may depend on the structure of

populations or the distribution of sampling effort in ways that

remain to be explored. We believe that the framework developed by

Doak et al. [5] provides a powerful tool with which to identify the

threshold at which biases become negligible and aid in the

development of appropriate sampling protocols for matrix models.

In addition, biases due to sampling variance could potentially be

eliminated entirely by using ‘‘Integral Projection Models’’ [35,36] to

analyze demography, although we know of no studies have

evaluated this possibility. Finally, we were surprised to find that

24% of the studies we reviewed failed to report the sample sizes on

which their demographic models were based. We end with a call to

researchers using matrix models to report the number of individuals

used to parameterize the different stage classes of their models–basic

information without which it is impossible to evaluate if and how the

results of ecological studies are biased.

Materials and Methods

Simulation models used to estimate how the accuracy of

projections of l varied with sample size were based on data

Figure 1. Relative bias in estimates of l (61 SD) with increasing
sample sizes and (A) survival = 0.5, (B) survival = 0.8, and (C)
survival = 0.9. Bias is calculated using the equation (l̂2l)/l6100%.
Results are shown for uniform sampling of all stage classes (filled
symbols) and sampling from a more realistic J-distribution (open
symbols). Sample sizes on the abscissa are the total number of plants
(summed across all stage classes) used for parameterizing matrix
models. The dashed line indicates a bias = 0.
doi:10.1371/journal.pone.0003080.g001

Sample Size and Matrix Models
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collected during a long-term and large-scale study of plant

demography conducted at Brazil’s Biological Dynamics of Forest

Fragments Project (BDFFP; 2u309S, 60uW). The focal species for

this study was Heliconia acuminata, a perennial herb native to central

Amazonia and the Guyanas [37]. Descriptions of the study site

and experimental design can be found elsewhere [24,25,38].

Briefly, permanent 50 m6100 m plots were established in 13 of

the BDFFP’s reserves in January 1998. All H. acuminata in each

plot were marked and mapped and the number of vegetative

shoots each plant had was recorded [24]. Since their establishment

the plots have been surveyed annually to record plant growth,

mortality, and the emergence of new seedlings (i.e., established

plants less than 1 year old). The plots were also surveyed during

the flowering season to record the identity of reproductive

individuals. The analysis presented here is based on summary

data from the 1998–2003 surveys conducted in six continuous

forest plots; during this time period we marked, measured, and

recorded the fates of N = 3842 plants in these sites.

The demography of Heliconia acuminata can be described by the

matrix shown in Figure 2. Note that there is no seed bank–all seeds

produced in year t either germinate and become seedlings or die in

year t+1. Our simulations used Bruna’s [24] 1998–1999 transition

year estimates of the vital rates from the continuous forest

populations to calculate the ‘true’ population growth rate (i.e., l);

the results of our simulations were not sensitive to the choice of

data to use as the reference year (results not shown).

We then simulated estimating l̂ for subsamples of the

population ranging from 25–200 individuals. To do so, we used

one of two probability distributions to simulate sampling each vital

rate: a beta probability distribution for the binomial vital rates

(e.g., probability of survival, probability of growth) and the gamma

distribution for the count-based vital rates (i.e., fecundity). Because

the beta distribution is continuous, bounded by 0 and 1, and can

be parameterized to have a variety of means and variances, it is an

appropriate choice for modeling estimates of the binomial vital

rates [4]. We chose the gamma distribution to model estimates of

Table 1. Samples sizes used to parameterize matrix models in 52 studies of plant demography (N = 68 species total).

Life history N Mean61 SD Median Range
Prop. using ,100
plants

No sample size
reported

perennial herb 28 747.2761223.92 214.94 30-4963 0.12 4

shrub 9 573.156480.02 302.62 162-1276 0 1

tree 16 1311.762040.72 575 91-6905 0.09 5

other 15 584.816558.84 362.5 71-1561 0.22 6

NSS is the number of studies that did not report the sample size used to parameterize models.
doi:10.1371/journal.pone.0003080.t001

Figure 2. (A) Heliconia acuminata transition matrix used in Monte Carlo sampling analysis. The vital rates which compose each matrix element are
defined as follows: si = Prob(individual in stage i survives one time step), gi = Prob(individual in stage i grows at least one stage in one time step |
survival), hx,i = Prob(individual in stage i grows at least x stages | growth of at least x21 stages), ri = Prob(individual in stage i regresses at least one
stage per time step | survived and did not grow), kx,i = Prob(individual in stage i regresses at least x stages | regression of at least x21 stages),
pi = Prob(plant in stage i flowers), fi = mean number of fruits per flowering plant in stage i, n = mean number of seeds per fruit, c = Prob(seed
germinates and establishes) (B) Heliconia acuminata transition matrix used in sampling simulations (see Methods).
doi:10.1371/journal.pone.0003080.g002

Sample Size and Matrix Models
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average fecundity because it is non-negative and can also be

flexibly parameterized. We parameterized both the beta and

gamma sampling distributions according to the method of

moments, a technique which parameterizes a distribution by

specifying its expected value and variance [39]. To define the

sampling process, we set the expected value and variance of an

estimated vital rate equal to the population’s mean vital rate and

sampling variance, respectively. We determined the sampling

variance at each sample size with equation (1) and equation (2).

Then, we used well-known method of moments relationships

between the parameters of the distributions and their expected

value and variance e.g., [40]. For the beta distribution, we used the

following relationship between the parameters and the mean and

variance of the distribution:

a~mŝsi
mŝsi

1{mŝsi

� �.
s2

ŝsi
{1

� �

b~ 1{mŝsi

� �
mŝsi

1{mŝsi

� �.
s2

ŝsi
{1

� � ð3Þ

where and mŝi and sŝi
2 are the mean and variance of the estimate of

vital rate si, respectively. Similarly, to calculate the parameters of

the gamma distribution, we used the relationship:

scale~s2
f̂fi

.
mf̂fi

shape~m2
fi

.
s2

f̂fi

ð4Þ

where mf̂fi
and s2

f̂fi
are the mean and variance of the estimate of

fecundity fi, respectively. According to equation (1), the variance of

binomial vital rate estimates is maximized when the rate is 0.5. To

test for a difference in bias when survival estimates vary

maximally, we simulated with both the true survival rates and

after replacing the survival of all stages with 0.5. We also simulated

at an intermediate survival level of 0.8, which is a high but realistic

probability of individual mortality (IJF, unpublished data). Similarly,

because the variance of estimates of fecundity is proportional to

the real variance of fecundity among individuals (equation (1), we

simulated with 3 levels of fecundity variance. We defined these

levels in terms of coefficient of variation, sf̂fi

.
m

f̂fi
i: 0.5, 2, and 16.

We used two different population structures to conduct our

simulations: a uniform distribution of individuals among size

classes (i.e., equal numbers of individuals in all size classes) and the

inverse J distribution [24,26], in which there are fewer stage i+1

individuals than stage i. We used the actual distribution of classes

observed in the field averaged over all years and sites to compute

the inverse J distribution.

For each vital rate, we ran 2000 simulations with populations

ranging in size from 25 to 200 individuals for all combinations of

survival (the mean values from the H. acuminata demographic

survey, henceforth called the ‘‘real’’ values, or mean surviv-

al = 0.5), fecundity (CV = 0.5, 2, or 16), and sampling distribution

(an ‘‘inverse J’’ distribution or a ‘‘uniform’’ distribution). We chose

25 individuals as the smallest sample size because smaller samples

would yield too few individuals per stage class to resemble what a

real study might sample. In each run of the simulation, we drew all

31 vital rates (26 binomial vital rates and 5 fecundities) from their

appropriate sampling distributions, computed a sample transition

matrix from these vital rates, and then estimated l as the

dominant eigenvalue of this transition matrix (Figure 2).

We then estimated the expected value and standard deviation of

the relative bias of l estimates at each combination of survival

rates, fecundity CV, distribution of sampling effort, and sample

size. We calculated the relative bias as (l̂2l)/l6100% where l is

the ‘‘true’’ asymptotic population growth rate and l̂ is the mean of

all 2000 population growth rates estimated. All simulations were

conducted using the R statistical computing environment [41].

To contextualize the results of our simulations, we conducted a

review the plant demographic literature to determine the sample

sizes used to parameterize matrix models. We conducted our

survey using a Web of Science search from March 15, 2006. Our

search terms were combinations of ‘‘matrix model’’, ‘‘plant’’, and

‘‘demography.’’ For each paper returned in our search, we used

the ‘‘times cited’’ and ‘‘references cited’’ features to find additional

relevant studies. For each study we identified the number of

individuals sampled to parameterize non-reproductive terms of the

matrix; if a study included more than one matrix (e.g., in multi-site

or multi-year studies), we calculated the average number of

individuals used.

Supporting Information

Appendix S1 Studies using matrix models to study plant

demography.

Found at: doi:10.1371/journal.pone.0003080.s001 (0.11 MB

PDF)
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