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We studied the phenotypic variation of the Atlantic Forest passerine Xiphorhynchus fuscus (Aves:
Dendrocolaptidae) with the broad aim of addressing whether the history and type of forest affected the evolution
of endemic taxa. We also tested whether the different subspecies and genetic lineages of X. fuscus could be
considered full species. We collected plumage and body size measurements and, in combination with genetic data,
used multivariate tests to evaluate the working hypotheses. Our results, combined with previous biogeographic
analyses, indicate that vicariant events have been important determinants in the evolution of phenotypic
characters of X. fuscus, once genetic isolation was complete. Our analysis also suggests that forest heterogeneity
and ecotones are important factors in the early evolution of Atlantic Forest taxa, perhaps via divergent selection.
Forest instability during the Pleistocene was critical in the evolution of phenotypic traits. We confirm that the
subspecies atlanticus should be considered a full species. Other lineages or populations are also phenotypically
differentiated but we do not suggest considering them as full species. They share high levels of gene flow and are
part of a continuous latitudinal cline of phenotypic variation. Our study suggests that not all the historic events
in the Atlantic Forest that affected the evolution of genetic lineages also influenced the evolution of phenotypic
characters in the same direction and intensity. Undoubtedly, natural selection played a major role in the evolution
of Atlantic Forest organisms. © 2014 The Linnean Society of London, Biological Journal of the Linnean Society,
2014, 113, 1047–1066.

ADDITIONAL KEYWORDS: Atlantic Forest – Caatinga – Cerrado – niche simulation – phenotypic evolution
– phylogeography – woodcreepers.

INTRODUCTION

Global climate cycles of the late Pleistocene are
assumed to have contributed substantially to biologi-
cal evolution, in particular in forested biomes (Haffer,

1969; Moritz et al., 2000; Behling & Negrelle, 2001;
Bermingham, Dick & Moritz, 2005; Colinvaux, 2005;
Ledru et al., 2005; Cheng et al., 2012; Ribas et al.,
2012). For example, during the last glacial maximum
the southern limit of the Atlantic Forest (Fig. 1A)
was likely located 750 km northward of its cur-
rent location; whereas the range of the rainforests
expanded into some locations currently occupied by
the Cerrado (Portuguese term for savanna) and the
Caatinga (dry forests of northeastern Brazil) (Ledru,
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Salgado-Labouriau & Lorscheitter, 1998; Behling,
2002; Auler et al., 2004; Wang et al., 2004). This
dynamic forest history modified, among other things,
the degree of connectivity between populations of
forest taxa, their population sizes, selection pres-
sures, their competition regimes, etc. Altogether,
these changes may have affected evolutionary pro-
cesses at several hierarchical levels, from genes to
phenotypes (Moritz et al., 2000). Recent genetic
studies support this evolutionary scenario for the
Atlantic Forest: many endemic taxa present strong
phylogeographic structure highly congruent with
the history of the Pleistocene forest (e.g. Cabanne
et al., 2008; d’Horta et al., 2011; Batalha-Filho,
Cabanne & Miyaki, 2012; Maldonado Coelho, 2012;

Raposo do Amaral et al., 2013, but see Cabanne et al.,
2013).

Even though the significance of forest range fluc-
tuations on the evolution of forest dwelling organisms
has been extensively studied and is of undeniable
importance, in particular with respect to phylo-
geographic structure, their effects on the phenotype
are not well understood (Schneider et al., 1999;
Moritz et al., 2000; Cabanne et al., 2011). In this
paper we address the hypothesis that the dynamic
history of the forest has affected the evolution
of complex characters such as those involved in
the external phenotype of individuals; characters
potentially more complex than those used to assess
phylogeographic structure. Past forest fluctuations
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Figure 1. (A) Study area and distribution of samples of Xiphorhynchus fuscus for plumage, morphometric and genetic
analysis. (B) Phylogeographic structure (based on mitochondrial and nuclear DNA) and gene flow pattern of the
Xiphorhynchus fuscus (Cabanne et al., 2008). M > 1 denotes high gene flow among lineages and M < 1 denotes low gene
flow. Subspecies atlanticus inhabits NE Brazil, northern the Rio São Francisco; subspecies tenuirostris occurs in the
coastal Bahía and Espírito Santo states (E Brazil), from the Rio São Francisco to the Rio Doce; subspecies brevirostris
inhabits the interior of Bahía state, and fuscus occurs from the Rio Doce to Argentina and Paraguay (Marantz et al.,
2003). Lineages are: NAF, Northern Atlantic Forest; CAF, Central Atlantic Forest; SAFN, Southern Atlantic Forest North;
SAFS, Southern Atlantic Forest South.
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significantly affected gene flow among populations
(e.g. Carnaval et al., 2009) and, if these processes also
affected the phenotype, its variation should follow
historic patterns of gene flow. Historic gene flow
patterns are represented in the phylogeographic
structure of neutral characters [e.g. mitochondrial
DNA (mtDNA) genetic variation]; therefore, variation
in the phenotype should be correlated with phylo-
geographic lineages described by neutral markers.
Violation of the aforementioned prediction would
mean that the forest history, which affected neutral
genetic structures, was not important for the evolu-
tion of phenotypic characters and that factors other
than drift associated with population isolation, such
as selection associated with current forest types, or
phenotypic plasticity, should be considered.

In this paper we also address the hypothesis that
local demographic instability, a product of historical
forest fluctuations, is important for evolution. The
process of contraction and expansion of the forest
(forest dynamics) has traditionally been viewed
as a process that can drive evolution because it gen-
erates different levels of isolation among regions
(vicariance) (Moritz et al., 2000). However, besides
leading to vicariance, forest dynamics promote local
demographic instability that could induce evolution
at a local scale. Intense contraction and expansion of
forests during glacial and inter-glacial periods, like
the one which occurred in the southern Atlantic
Forest (Behling, 1998; Behling, 2002), should have
involved not only events of extinction and coloniza-
tion, but also they may have impoverished forest
habitats of many forest taxa. Accordingly, current
populations of each forest taxon should present dif-
ferent degrees of historic demographic stability,
ranging from highly stable in regions that main-
tained the forest during glaciation peaks (i.e. south-
ern Bahía, Carnaval & Moritz, 2008), to fully
unstable in regions where forests were replaced by
grasslands during these same periods (e.g. southern
Atlantic Forest, Behling, 2002). Demographic insta-
bility could drive evolution at the local scale because:
(i) it can cause local population extinctions; (ii) it may
fragment existing populations; and (iii) it reduces the
effective size of populations. In turn, these processes
may cause a reduction of genetic diversity and sto-
chastic fixation of alleles in the affected population.
Even though phenotypic traits are likely to be
affected by selection, strong population reductions or
instability increase the impact of drift and stochastic
extinctions. Therefore, if demographic instability is
important for the evolution of phenotypic characters
at the local scale, we expect to find differences
between regions of historical stability and instability,
namely: (i) divergence in phenotypic traits between
regions (e.g. different wing lengths); and (ii) lower

phenotypic diversity in unstable populations (Roulin
& Ducrest, 2013).

Last, we also evaluated the hypothesis that selec-
tive forces across different types of forests and
ecotones can be important in shaping phenotypic
characters (Smith et al., 1997, 2005b; Sulloway &
Kleindorfer, 2013). Under selection, the phenotype
may vary with factors other than neutral genetic
markers, for example it may follow environmental
gradients and habitat changes (Zink & Remsen, 1986;
Meiri & Dayan, 2003). We believe the Atlantic Forest
is a suitable system to study divergence across habi-
tats because it presents different phytophysiognomies
and climates, ranging from coastal ombrophilus
and Araucaria forests without a dry season to semi-
deciduous and deciduous forests with a strong dry
season (Veloso, 1991; Galindo Leal & Câmara, 2003)
(Fig. 1A). Another interesting feature of the biome is
that towards the centre of the continent it borders,
through ecotones, with a dry corridor formed by semi-
open biomes, namely the Caatinga, Cerrado and
Chaco (Veloso, 1991). Many Atlantic Forest taxa
inhabit more than one forest type, or even occur in
gallery forests and forest relicts within the dry corri-
dor. All these forest types have different overall con-
ditions (e.g. climate, luminosity, structure, etc.) and,
thus, selective forces on phenotypic characters might
vary across them. A prediction stemming from this
hypothesis implies finding divergence in phenotypic
traits among forest types that cannot be explained by
genetic isolation alone (vicariance) (Smith et al., 1997,
2005a).

We studied here the phenotypic and genetic varia-
tion of the lesser woodcreeper Xiphorhynchus fuscus
Vieillot (1818) (Aves, Dendrocolaptidae) and tested
the aforementioned hypotheses on the effects of the
recent history of forests on the evolution of endemic
taxa. X. fuscus is a good model for forest biogeo-
graphic studies because it occurs in well preserved
forests in most of the Atlantic Forest’s range, from sea
level up to 1200 m.a.s.l. (Fig. 1A). Additionally, in a
previous study, we found that it can be divided into
four main lineages that were not in full agreement
with the four described subspecies (Marantz et al.,
2003; Cabanne et al., 2008) (Fig. 1B). Only the sub-
species atlanticus is monophyletic, isolated from
the other populations, and currently considered a full
species by some biologists (CBRO, 2014). The other
subspecies (brevirostris, tenuirostris and fuscus) are
not monophyletic, but if they diverged in phenotypic
characters in a discrete way (not continuous clinal
variation, Winker, 2010), they could be considered full
species by some integrative species definitions, such
as the General Lineage Species concept (de Queiroz,
1998). At the moment there is no available thorough
description of the phenotypic variation of the lineages
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and subspecies of X. fuscus that could be used to
address these taxonomic questions.

The two main objectives in this paper are: (1) to
evaluate the different hypotheses on the effects of
recent forest dynamics on the evolution of endemic
taxa; and (2) to address, from an evolutionary stand-
point, the taxonomic status of lineages and subspecies
of X. fuscus. To achieve our objectives we answered
the following questions regarding our study model: (i)
What is the effect of population isolation (evaluated
through the phylogeographic lineages, Fig. 1B), of the
different forest types and of demographic instability
on plumage and body size traits?; (ii) Is the variation
of phenotypic traits discrete or continuous?; (iii) Are
the subspecies and lineages differentiated by pheno-
typic traits, and could they be considered species
following the General Lineage Concept of species?
To answer these questions we first collected plumage
and body size measurements; used genetic data to get
genetic diversity metrics; and simulated geographic
distributions to describe demographically unstable
populations. Then, we used multivariate statistics to
study the effect on the phenotype of four factors
(forest types, stability, genetic lineages and subspe-
cies). Finally, we addressed taxonomic questions
based on the General Lineage Concept of species,
mainly because it is one of the most inclusive species
concepts, and it is the one adopted by most ornitholo-
gists in the Neotropics (Aleixo, 2007).

MATERIALS AND METHODS
PLUMAGE AND MORPHOMETRIC DATA

To analyze plumage and body size variation we
studied a total of 260 specimens from the following
museums: Museu de Zoologia da Universidade de
São Paulo, Brazil; Museu Nacional, Rio de Janeiro,
Brazil; Coleção de Aves da Universidade Federal de
Pernambuco, Recife, Brazil; and Museo Argentino de
Ciencias Naturales, Buenos Aires, Argentina.

The plumage colours in woodcreepers are mostly
melanin-based, mainly because of the high prevalence
of tones of brown, reddish-brown and black. Melanin-
based plumages have an important genetic component
(Mundy, 2006; Karell et al., 2013; Roulin & Ducrest,
2013), and thus are suitable for evolutionary studies
because they are not expected to be subject to sub-
stantial phenotypic plasticity. We examined plumage
variation in a subset of 197 adult specimens (101
males, 80 females and 16 undetermined) collected in
95 localities encompassing the entire range of the
species (Fig. 1A and Table A3). We recorded ten
plumage characters from each study skin. For each
character, we defined a scoring system by subdividing
the total range of colour or pattern variation and

assigning a discrete state or score to each subdivision.
See Table A1 for a description of characters. The
number of states per character varied from two to five,
depending on the degree of variation of each character.
Specimens were scored by a single observer (GSC) by
comparison with reference specimens. We described
colours following the Munsell Soil Colour Charts
(Munsell Color Company, 2000).

We examined variation in body size traits in a
subset of 202 adult specimens (105 males, 85 females
and 12 adults of undetermined sex) collected in 107
localities (Fig. 1A and Table A4). We recorded seven
morphometric variables from each study skin: total
length of the culmen, from base to tip (Bill I); length
of culmen, from nostril to tip (Bill II); bill depth at
nostril (Bill depth); width of bill at nostril (Width bill);
tail length, from the base at the uropygial gland to
the tip of the longer rectrix (Tail); tarsus length, from
junction of tibiotarsus and tarsometatarsus to distal
junction of hind toe and tarsometatarsus (Tarsus);
and un-flattened wing length (Wing). The morphologi-
cal traits that we studied have mid to high heritabil-
ity in a number of passerine birds (e.g. Boag & van
Noordwijk, 1987; Grant & Grant, 2008), therefore
they are suitable for the present study. All measure-
ments were performed by GSC using a caliper (accu-
racy of 0.1 mm).

Finally, to study body weight we used 37 museum
specimens (22 males, 10 females and five unsexed),
nine published records (Brooke, 1983; de Faria & de
Paula, 2008; Mallet-Rodrigues, 2005; Reinert et al.,
1996) and two weight measurements of live birds in
the field (Cabanne, unpubl. data).

PHYLOGROUP ASSIGNMENTS AND

GENETIC-PHENOTYPIC DIVERSITY STUDY

We used the genealogy (mtDNA and the nuclear
marker FIB5) obtained in Cabanne et al. (2008)
(Fig. 1B) to test phenotypic differentiation of genetic
lineages.

We also used genetic data to explore contact regions
between genetic lineages and to obtain a metric of
genetic diversity (nucleotide diversity), which we com-
pared with phenotypic diversity. For this analysis we
used a total of 138 mtDNA sequences (control region,
575 bp), with 113 sequences obtained from Cabanne,
Santos & Miyaki (2007) and 25 sequences specifically
obtained for this study following the methodology
by the same author, and 68 nuclear DNA sequences
(FIB5, 547 bp) available from Cabanne et al. (2008).
GenBank accession numbers for the new sequences
are KJ812122–KJ812145. See Table A2 for details of
the samples used to obtain new sequences.

For exploring a model of phenotypic neutrality,
we analyzed genetic diversity by dividing the study
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region in latitudinal bands of a width of one degree.
We pooled genetic data from specimens coming from
each band, and compared uncorrected nucleotide
diversities for both mtDNA and ncDNA markers with
phenotypic diversity (see Multivariate statistical
analysis).

MAPPING AREAS OF HISTORICAL INSTABILITY

To identify areas with X. fuscus populations that were
most likely to have remained stable during the late
Pleistocene, a period of intraspecific diversification of
the species and of important geographic changes in
the Atlantic Forest distribution (Cabanne et al.,
2008), we constructed current and past distribution
maps using ecological niche modelling, and inter-
preted overlapping areas among maps as regions with
putative stable populations (e.g. Carnaval
& Moritz, 2008; Thomé et al., 2010). We used the
maximum entropy algorithm implemented in
MAXENT (Phillips, Anderson & Schapire, 2006), with
geographic records obtained from the phenotypic
and genetic study and also from the ORNIS database
(http://www.ornisnet.org/). See MAXENT input file in
Supporting Information, Table S1. We obtained cli-
matic variables from WorldClim (Global Climate
Data, http://www.worldclim.org) (Hijmans et al.,
2005) and used them with a resolution of 2.5 arc-
minutes. Variables used in our final analyses, selected
following a rationale of permutation importance > 5%,
were: mean diurnal range of temperature (BIO2),
isothermality (BIO3), temperature seasonality
(BIO4), mean temperature of wettest quarter (BIO8),
mean temperature of coldest quarter (BIO11), annual
precipitation (BIO12), precipitation of warmest
quarter (BIO18) and precipitation of coldest quarter
(BIO19). We also selected variables according to
the criterion of elimination of correlated variables
(Peterson et al., 2011). However, because results
obtained with both methods of variable selection did
not differ, we only present those based on the first
criterion. The model obtained with current conditions
was projected in the following past periods: last
glacial maximum (LGM), 21 000 years BP (models
MIROC3.2 and CCSM, data downloaded from
WorldClim) and last inter-glacial (LIG; ∼120 000–
140 000 years BP) (from WorldClim; Otto-Bliesner
et al., 2006). General conditions for all analyses were:
random test points: 25; replicates: 10; replicate type:
subsample; maximum iterations: 5000. We produced
binary maps by adopting the threshold definition of
equal training sensitivity and specificity criterion.
The models were evaluated with the underlying
area (AUC) of Receiver Operating Characteristics
Curve (ROC) for the modelling algorithm. Models
were transformed to binary and overlapped to obtain

a final stability map in DIVA-GIS 7.5 (http://www
.diva-gis.org).

MULTIVARIATE STATISTICAL ANALYSIS

We first extracted principal components from both
plumage and morphometric phenotypic variables
and then applied multivariate analyses of variance
(MANOVA) (Hair et al., 2010) to evaluate how each
factor affected the phenotype. For plumage data we
extracted principal components with a non-linear
principal component analysis (non-linear PCA, also
known as categorical PCA, Gifi, 1990). Non-linear
PCA has the same objectives as a traditional PCA
(Quinn & Keough, 2002), but it is suitable for vari-
ables of mixed measurement levels (e.g. nominal and
continuous variables), such as the plumage variables
studied here (nominal variation). For this analysis
variables were considered unordered. For continuous
body size variables we extracted principal compo-
nents with a linear PCA by using a correlation matrix
and Varimax rotation. For both body size and
plumage data we selected the first principal compo-
nents that accounted for more than 80% of the origi-
nal variation.

We studied principal components by using MANOVA
to evaluate the role of the following factors on pheno-
typic variation. (1) Phylogeographic lineages (Line-
ages), as a proxy for historic isolation: we assigned
samples of plumage and morphometric analyses to a
specific lineage according to its geographic distribu-
tions (Fig. 1B and results of the genetic analysis).
Samples from locations where two or more genetic
lineages overlapped geographically were not consid-
ered. (2) Population instability: we classified samples
based on the collection site and its stability/instability
condition defined by the niche simulations. (3)
Forest type: we classified samples according to the
dominant forest at the collection locality in: (i) dense
ombrophilus forests from the coastal range (lowlands
and Serra do Mar ranges) and Araucaria forests, (ii)
semi-deciduous forests, and iii) dry (xeromorphic) and
gallery forests within Cerrado and Caatinga (hereafter
dry/gallery forests). We used forests classification of
Veloso (1991) (Fig. 1A). (4) Subspecies: we assigned
specimens to subspecies based on the geographic dis-
tribution of the intraspecific taxa (Marantz et al.,
2003). For the MANOVA we considered collection year
and sex as covariate and co-factor (no fixed effects),
respectively. We considered collection year as covariate
because the colour of museum skins may have faded
with age since collection. Plumage studies should
control for specimen age, otherwise old specimens may
look different from newer specimens. Before running
our analyses we checked prerequisites for MANOVA
(Hair et al., 2010).
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After each MANOVA, results were confirmed by
ANOVAs and post hoc Scheffé tests on each single
principal component (Hair et al., 2010). When data
violated the prerequisites for ANOVA we applied
Kruskal–Wallis tests (Quinn & Keough, 2002). We
used SPSS 15.0 (Windows, SPSS Inc., Chicago, IL)
and Rundom Pro 3.14 (Jadwiszczak, 2009) for statis-
tical analyses.

CLINAL ANALYSIS OF TRAITS

For the taxonomic discussion we studied whether
specific traits varied according to a continuous or step
cline across latitude, by adjusting both a linear and a
polynomial function to the relationship between most
of the trait variation (i.e.: first principal component)
and latitude. We only studied a latitudinal cline
because subspecies and clades are distributed across
a latitudinal axis. If variation follows a step cline we
expect the polynomial function to have a better good-
ness of fit to the data than the linear function. We
evaluated absolute goodness of fit using the formula

D E O O= −( ) ÷( )∑ 22 22 , where D is the sum over all

cases of absolute deviations between the predicted
value according to the adjusted equation (E) and the
observed value (O).

RESULTS
GENETIC DATA ANALYSIS

Results of the phylogenetic evaluation of the mtDNA
complete data set were in full agreement with the

phylogeny obtained in our previous study (Fig. 1A,
results not shown). We used the mitochondrial data
set and the nuclear sequences to obtain nucleotide
diversity values to be compared with phenotypic
diversity (Supporting Information, Table S2).

SPECIES DISTRIBUTION MODELS

We collected a total of 268 occurrence records, which
after eliminating records from the same locality
(duplicates) totalled 112 records to be used in
MAXENT. Figure 2 presents the results of the niche
models for the present, LGM, LIG and the final model
of stability across all periods. The support of the
MAXENT model was good (mean AUC = 0.944). We
used the stability model to define regions of popula-
tion stability/instability for the multivariate analyses.
This stability model suggested that most regions
outside the coastal ranges were unstable, because
they did not present the species during the four
periods considered. Interestingly, the three regions of
instability that reached the coast, or that were proxi-
mate to it (Fig. 2D), coincided with regions of lineage
transitions in the species (Fig. 1B).

PLUMAGE, DATA REDUCTION

A Mann–Whitney test on each single plumage char-
acter indicated that X. fuscus did not present
plumage sexual dimorphism (P > 0.05 for all tests,
with Bonferroni correction for number of characters).
Therefore, we lumped data for both sexes for the
following plumage analyses.

A: Present

Mean AUC: 0.944

A: Present

Mean AUC: 0.944

MIROC + CCSM
(overlapping models)

MIROC or CCSM

B: LGMB: LGM

C: LIGC: LIG

D: Population stability
model

D: Population stability
model

Stability region (Four overlapping
models)

Unstable region (Three overlapping
models)

Unstable region (Two overlapping
models)

Unstable region (One model)

São Francisco
River

Doce River

Paraíba do Sul River

Figure 2. Simulated models of the distribution of Xiphorhynchus fuscus obtained in MAXENT in the (A) present,
(B) last glacial maximum (LGM), (C) last inter-glacial period (LIG), and (D) a model of population stability across all
the periods. Regions of lineage transitions that match unstable regions are also depicted (arrows in D). White dots in A,
B and C represent records used for MAXENT simulations. White dots in D represent samples for the plumage and
morphometric study.
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A categorical principal component analysis reduced
variation in plumage data. We selected the first two
principal components, which accounted for 81% of the
variability of the original data (Table 1). See Support-
ing Information, Figures S1 and S2 for a PC1 – PC2
plot.

PLUMAGE ANALYSIS: SUBSPECIES

A MANOVA model indicated that subspecies (Pillai’s
trace = 1.283, F8, 380 = 84.907, P < 0.001, Partial
squared Eta = 0.642 and Power = 1) and collection
year (Pillai’s trace = 0.087, F2, 189 = 8.974, P < 0.001,
Partial squared Eta = 0.087 and Power = 0.972) are
significant factors for plumage variation. Subspecies
presented the largest effect size according to partial
squared Eta, while the contribution of year of collec-
tion was very small. This result was further corrobo-
rated with Kruskal–Wallis tests and ANOVAs on

each principal component (Fig. 3). Post hoc tests on
PC1 separated atlanticus from tenuirostris and both
from brevirostris and fuscus. For variables correlated
to PC1 (Table 1) the largest divergence occurred
between atlanticus and the other subspecies, where
more than 87% of the plumage characters presented
different median scores (Fig. 3). PC2 only separated
tenuirostris from the other samples. Subspecies
brevirostris strongly diverged from the other subspe-
cies but post hoc tests were not significant, perhaps
due to the low sample size (n = 4, Table A3).

An analysis for further testing the phenotypic iden-
tity of the subspecies detected diagnostic characters
only for atlanticus (Table A3). The specific six
character states for atlanticus were: CChead state 1
(very dark brown), Throat state 1 (brownish yellow),
PCchest state 1 (brownish yellow), PEXchest state 1
(dark yellowish brown), MCmantle state 1 (dark
brown) and Under-tail state 1 (plain). In summary, X.
fuscus atlanticus was the darkest and most brownish
population and the only one presenting plain under-
tail coverts, while all the other populations presented
striated under-tail coverts.

We studied the relationship between plumage vari-
ation (plumage PC1, 68.32% of original variation) and
latitude to evaluate whether plumage variation was
continuous across latitude. We adjusted both polyno-
mial and linear equations to the data and observed
that the goodness of fit D of the polynomial function
was 1.73 times larger than D of the linear equation,
which indicated that plumage of X. fuscus did not
vary following a latitudinal continuous cline (Fig. 4A).

PLUMAGE ANALYSIS: BIOGEOGRAPHY

A MANOVA model for testing lineages, forest type,
forest stability and year of collection found that

Table 1. Loadings of categorical principal components of
plumage of Xiphorhynchus fuscus. Percentage of explained
variance between parentheses

Plumage character PC1 (68.32%) PC2 (12.73%)

CChead 0.988 −0.139
CEXhead 0.620 0.475
Throat 0.988 −0.138
PCchest 0.988 −0.138
PEXchest 0.988 −0.138
MCmantle 0.988 −0.138
MEXmantle 0.276 0.753
Tail 0.621 0.177
Pchpattern 0.353 0.579
Under-tail 0.988 −0.138
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Figure 3. Analysis of subspecies’ plumage based on categorical principal components. Lowercase letters within graphs
indicate grouping after post hoc tests (Scheffé tests). P-K.W. indicates significance of Kruskal Wallis test. P-ANOVA indicates
significance of ANOVA test. A matrix of divergence between subspecies is also shown. Divergences represent the
proportion of characters associated to the specific PC with different median scores. Subspecies are: atl (atlanticus), ten
(tenuirostris), brev (brevirostris) and fuscus.

PHENOTYPIC EVOLUTION IN X. FUSCUS 1053

© 2014 The Linnean Society of London, Biological Journal of the Linnean Society, 2014, 113, 1047–1066

D
ow

nloaded from
 https://academ

ic.oup.com
/biolinnean/article-abstract/113/4/1047/2415834 by guest on 11 M

ay 2020



lineages and year of collection affected plumage,
with lineage being the strongest factor according to
partial squared Eta (Table 2). A low power may have
compromised the test of forest type and stability.
This result was confirmed by individual ANOVA and
Kruskal–Wallis tests on each principal component
(Fig. 5). A post hoc test on PC1 separated the lineage
Northern Atlantic Forest (NAF) from the lineage
Central Atlantic Forest (CAF), and both of them
from the more southern lineages Southern Atlantic
Forest North (SAFN) and Southern Atlantic Forest
South (SAFS) (Fig. 1B). For variables associated
with PC1 the largest divergence was between
lineage NAF and the others, where 62% to 87% of
the plumage characters presented different median
states. PC2 only separated lineage CAF from the
other samples with divergence at the associated
characters of 33 to 66%.

A Levene test did not detect differences in variances
for plumage PC1 and PC2 between regions of stable
and unstable populations of Figure 2D (P > 0.05).
Also, most of the plumage diversity (variance of
plumage PC1) was not correlated with mitochondrial
or nuclear genetic diversity (P > 0.05).

BODY MEASUREMENTS: SEXUAL DIMORPHISM AND

DATA REDUCTION

X. fuscus did present sexual dimorphism in three
body measurements (t-test, P < 0.01 for all tests),
specifically in beak width (3.4% narrower beak in
males), wing length (3.1% shorter wings in females)
and tail length (2.2% shorter tails in females). Thus,
we used sex as a co-factor in the subsequent analyses
of variance.

A principal component analysis was used to reduce
variation in body size measurements. We selected the
first three principal components, which together
accounted for 81.4% of the total variability (Table 3).
See Supporting Information, Figures S1 and S2 for
bivariate plots of principal components.

BODY MEASUREMENTS: SUBSPECIES

A MANOVA model found that subspecies (Pillai’s
trace = 0.710, F9, 546 = 18.825, P < 0.001, Partial squat-
ted Eta = 0.237 and Power = 1) and sex (Pillai’s
trace = 0.179, F3, 180 = 13.040, P < 0.001, Partial squat-
ted Eta = 0.179 and Power = 1) were significant for
body measurements variation, subspecies having the
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Figure 4. (A) Xiphorhynchus fuscus’ plumage, (B) body size traits and (C) body weight variation across latitude.

Table 2. Multiple analysis of variance based on plumage (a) and body size (b) traits of Xiphorhynchus fuscus

Factor
Pillai’s
trace F d.f. P-value

Partial
squared Eta Power

a-plumage
Lineage 1.221 89.295 6, 342 < 0.001 0.610 1.000
Forest type 0.021 0.904 4, 342 0.462 0.01 0.287
Forest stability 0.009 0.785 2, 170 0.458 0.009 0.182
Collection year (covariate) 0.063 5.748 2, 170 0.004 0.063 0.862
b-body size
Lineage 0.812 21.162 9, 513 < 0.001 0.271 1.000
Forest stability 0.122 7.863 3, 169 < 0.001 0.122 0.989
Forest 0.199 3.592 6, 340 0.002 0.06 0.952
Sex 0.213 15.276 3, 169 < 0.001 0.213 1.000
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largest effect size. This result was further corroborated
by individual ANOVA tests on each principal compo-
nent (Fig. 6). A post hoc test on body traits PC1
separated atlanticus from tenuirostris and both from
brevirostris plus fuscus. Subspecies atlanticus was the
largest one and divergence with the other subspecies
at the variables associated with PC1 was on average
7.7% to 13.7%, while maximum average divergence
between the other subspecies was 6.5%. PC2 presented
the same variation tendency observed in PC1, but post
hoc tests did not have enough power to differentiate
groups. PC3 did not vary in a clear way among
subspecies. See Table A4 of Appendix for mean values
of body measurements for each subspecies.

BODY MEASUREMENTS: LATITUDE AND WEIGHT

We studied whether body size measurements varied
along a latitudinal cline by studying the relationship
between PC1 and latitude. We adjusted polynomial

and linear equations to the data and observed that
both functions presented similar goodness of fit (ratio
of D between functions = 1.0031), thus we concluded
that body measurements did vary following a continu-
ous latitudinal cline (Fig. 4B). A similar result was
obtained with PC2 (results not shown).

Most of the studied specimens did not have avail-
able weight data; therefore we did not include weight
in body size multivariate analyses. Figure 4C indi-
cates that body weight decreased from northern to
southern populations. That is, average weight in
the northernmost population (subspecies atlanticus,
mean weight = 26.98 g, n = 23) and the southernmost
population (subspecies fuscus, mean weight = 20.05 g,
n = 22) was statistically different (t-test P < 0.001).
The fact that body weight varied across latitude in a
similar way to the variation found for PC1 and PC2
(Fig. 4B), corroborated that the principal components
are good indicators of body size.

BODY MEASUREMENTS: BIOGEOGRAPHY

A MANOVA model for testing lineages, forest type,
population stability and sex found all factors signifi-
cant (Table 2b), with lineages and sex having the
largest effect size, followed by population stability
and forest type.

This result was further corroborated by individual
ANOVAs with sex as co-factor (Fig. 7). A post hoc test
on body size PC1 separated all lineages, where the
largest divergence in variables correlated to PC1 (bill)
occurred between lineage NAF (subspecies atlanticus)
and the others (divergence range 8.5−15.24%). A post
hoc test on PC2 separated lineage NAF from the
others, with divergence in the range of 6.4–12%. PC3
did not vary among lineages in a meaningful way.
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Figure 5. Analysis of lineages and plumage based on principal components. See Figure 1B for phylogenetic and
geographic relationships of lineages. Lowercase letters within graphs indicate grouping after post hoc tests (Scheffé tests).
P-K.W. indicates significance of Kruskal Wallis test. P-ANOVA indicates significance of ANOVA test. A matrix of divergence
between lineages is also shown. Divergences represent the proportion of characters associated to the specific PC with
different median scores.

Table 3. Loadings of principal component of body size
traits of Xiphorhynchus fuscus. Percentage of explained
variance in parentheses

Body size traits
PC1
(53.73%)

PC2
(15.61)

PC3
(12.1%)

BILL I 0.893 0.243 0.134
BILL II 0.853 0.195 0.203
BILL WIDTH 0.798 0.062 0.019
BILL DEPTH 0.738 0.426 −0.016
WING 0.504 0.730 −0.085
TAIL 0.100 0.929 0.075
TARSUS 0.125 0.012 0.980
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Post hoc tests on body measurements PC1 did not
separate forest types in a clear way, but PC2 (wing
and tail) and PC3 (tarsus) did separate dry/gallery
forest from the other continuous forests (coastal,
Araucaria and semi-deciduous). Birds from continu-
ous forests presented shorter wings and tails (body
PC2, in average 1.4–2.6% shorter), while birds from
dry/gallery forest had shorter tarsi (body PC3, 4.6–
5.9% shorter).

Regarding forest stability, body size PC1 did show
difference between stable and unstable populations,
with unstable populations having, on average, shorter
bills (average divergence 5.5%). PC2 also separated
both types of populations, with stable ones presenting
longer wings and tails on average (average difference
4.1%). In addition, a Levene test rejected equal vari-
ances between stable and unstable populations in
body PC1 (P = 0.006, 53% higher variance in stable
populations), in body PC2 (P = 0.003, 58% higher
variance in sable populations) and in body size PC3
(P < 0.001, 41% higher variance in unstable popula-
tions). Finally, most of the body size diversity (vari-
ance of body size PC1) was not correlated with
mitochondrial or nuclear genetic diversity (P > 0.05).

DISCUSSION
EFFECT OF ISOLATION: DID FOREST DYNAMICS

AFFECT PHENOTYPIC EVOLUTION?

The results of this study suggest that not all the
events that affected the evolution of the genetic line-

ages of a forest bird also affected the evolution of its
phenotypic traits in the same direction and with the
same intensity. Factors other than historical isolation
should be considered in order to understand pheno-
typic evolution. Most genetic lineages of X. fuscus
(Fig. 1B), which evolved under different levels of iso-
lation during the Pleistocene (see Cabanne et al.,
2007, 2008), were differentiated by plumage or body
size traits. However, only the most divergent and
completely isolated lineage of X. fuscus atlanticus
(gene flow M < 1 individual/generation, Cabanne
et al., 2008) was associated with a clear step transi-
tion in phenotypic traits (Figs 3, 5 and 7). The other
lineages, which shared high gene flow levels among
each other (Cabanne et al., 2008), were located along
a latitudinal continuous cline of colour and body size
and, thus, did not represent clear biological entities
(Fig. 4 and Supporting Information, Figs S1 and S2).

Our findings corroborate that partial isolation
within the same environment does not always
produce phenotypic divergence, indicating that
factors other than drift associated with vicariance are
important for phenotype evolution (e.g. selection)
(Schneider et al., 1999; Milá et al., 2009). The action
of selection is further suggested by the lack of corre-
lation between genetic and phenotypic diversity. The
fate of phenotypic traits with genetic basis during
forest fluctuations may depend on the levels of selec-
tion affecting them (Saether et al., 2007; Whitlock,
2008). Even though neutrality of phenotype seems to
be unlikely (Zink & Remsen, 1986), we explored this

P- < 0.001ANOVA

P- < 0.001ANOVA

P- : 0.1ANOVA

3
C

P
1

C
P

2
C

P

Subspecies
atl brevten fuscus

ezis
ydo

B

Divergence, bill variables
ten brev fuscus

atl
ten
brev

Divergence, wing-tail length
ten brev fuscus

atl
ten
brev

Divergence, tarsus length

0.076 0.133 0.137
0.060 0.065

0.031

0.057 0.100 0.102
0.045 0.048

0.018

0.033 0.090 0.026
0.057 0.007

0.068

ten brev fuscus
atl
ten
brev

a
b

c c

a
a,b

b b

a
a,b

b

b

Figure 6. Analysis of subspecies based on principal components of body size traits. Lowercase letters within graphs
indicate grouping after post hoc tests (Scheffé tests). P-ANOVA indicates significance of ANOVA test. A matrix of divergence
between subspecies is also shown. Divergences represent the average absolute proportional difference, in relation to the
higher value, in measurements of traits associated to each principal component. For example, for PC1, divergence between
atlanticus and fuscus is 0.137, which means that in average fuscus is 13.7% smaller than atlanticus in variables
associated to PC1.

1056 G. S. CABANNE ET AL.

© 2014 The Linnean Society of London, Biological Journal of the Linnean Society, 2014, 113, 1047–1066

D
ow

nloaded from
 https://academ

ic.oup.com
/biolinnean/article-abstract/113/4/1047/2415834 by guest on 11 M

ay 2020



2
C

P
)liat,gni

w(

ezis
ydo

B

P- : 0.013ANOVA

Divergence, wing-tail length
0.04

Unstable Stable
Population

3
C

P
(ta

rs
us

) P- : 0.258ANOVA

Divergence, tarsus length\
0.003

1
C

P
)llib(

P- < 0.001ANOVA

Divergence, bill variables
0.055

P- : < 0.001ANOVA

1
C

P
)llib(

P- : < 0.001ANOVA

2
C

P
)liat,gni

w(
P- : < 0.001ANOVA

3
C

P
(ta

rs
us

)

Lineage
SAFS

Divergence bill variables
CAF SAFS SAFN

Divergence wing-tail length
CAF SAFS SAFN

ezis
ydo

B

Divergence tarsus length
CAF SAFS SAFN

a

b c
d

a

b b,c
c

a,c

b b,a
c

Forest
Coast Semidec. Dry/gallery

P- : 0.025ANOVA

P- : 0.011ANOVA

P- : 0.001ANOVA

Divergence, bill variables
Semidec. Dry/gallery

Divergence, wing-tail length
Semidec. Dry/gallery

Divergence tarsus length
Semidec. Dry/gallery

NAF 0.085 0.117 0.153
CAF 0.041 0.075
SAF 0.034

NAF 0.065 0.090 0.121
CAF 0.025 0.060
SAFS 0.040

NAF 0.046 0.040 0.010
CAF 0.007 0.036
SAFS 0.030

Coast 0.015 0.027
Semidec. 0.032

Coast 0.012 0.015
Semidec. 0.027

Coast 0.0136 0.047
Semidec. 0.06

1
C

P
)llib(

2
C

P
)liat,gni

w(
3

C
P

(ta
rs

us
)

ezis
ydo

B

a
a

a

a
a b

a
a

b

NAF CAF SAFN

Figure 7. Analysis of the effects of lineages, forest type and population stability–instability based on body size traits
principal components. Lowercase letters within graphs indicate grouping after post hoc tests (Scheffé tests). P-ANOVA

indicates significance of ANOVA test. A matrix of divergence between subspecies is also shown. The divergences represent
the average absolute proportional difference, in relation to the higher value, in measurements of traits associated to each
principal component. For example, for PC1, divergence between NAF and SAFS is 0.153, which means that in average
SAFS is 15.3% smaller than NAF in variables associated to PC1.

PHENOTYPIC EVOLUTION IN X. FUSCUS 1057

© 2014 The Linnean Society of London, Biological Journal of the Linnean Society, 2014, 113, 1047–1066

D
ow

nloaded from
 https://academ

ic.oup.com
/biolinnean/article-abstract/113/4/1047/2415834 by guest on 11 M

ay 2020



hypothesis as a null model (Storz, 2002). An expecta-
tion for this scenario of neutrality would be to find
a positive correlation between diversity of neutral
genetic markers and of phenotypic characters, in
addition to correspondence between the neutral
genetic structure and the phenotypic trait variation.
This is because according to population genetic
theory, alleles governing the putative neutral pheno-
typic traits and the neutral genetic markers should
have been affected by similar evolutionary forces [e.g.
direction and intensity of gene flow, drift, population
demography, etc., but not selection, (Hedrick, 2005)].
However, because neutral genetic diversity and the
diversity of the phenotypic traits were not correlated,
the idea of a neutral phenotype evolving only by drift
is not supported.

Our results are in accordance with studies of other
organisms describing how morphological divergence
might be related to habitat differences and not strictly
to isolation (Schneider et al., 1999; Smith, Kelt &
Patton, 2001; Smith et al., 2005a, 2011; Milá et al.,
2009; Cabanne et al., 2011; Sulloway & Kleindorfer,
2013). For example, Cabanne et al. (2011) studied the
phylogeographic structure and plumage variation of
the Planalto woodcreeper (Dendrocolaptes platyrostris
Spix, 1824), a bird of the Atlantic Forest that
also inhabits gallery and dry forests of the Cerrado,
Chaco and Caatinga. They found that most of the
variation in plumage colour in this species followed
changes in habitat type (continuous rainforest versus
dry/gallery forest) instead of population historical
divergence (phylogeographic gaps). This suggests that
selection associated with habitat type may be directly
responsible for the evolution of the plumage of this
species.

DID POPULATION INSTABILITY AFFECT PHENOTYPE?

Population instability also seems to be important for
the evolution of body size traits. Specifically, we found
bill, wings and tail to be affected by forest instability;
and, even though effect size was small (e.g. average
divergence 5.5% in bill traits), it was comparable to
the effect described for forest type. In addition to
the observed changes in mean values, we also found
that variability of most body size traits (variances
in body size PC1 and PC2) was smaller in unstable
forests (Variability approximately 100% higher in
stable populations), as expected according to our
working hypothesis. We believe that this difference
may be a consequence of higher extinction of alleles
affecting the studied phenotypic traits during periods
of forest fragmentation.

Population instability is also important for gene
flow and the resulting phylogeographic patterns in
X. fuscus, as shown in other birds and forests (e.g.

Arbeláez-Cortés, Milá & Navarro-Siguenza, 2014).
This is supported by the observed correspondence
between the geographic distribution of the phylogeo-
graphic lineages of X. fuscus and the areas of stability
(Figs 1B, 2D). The four main phylogeographic lineages
are associated with regions of population stability.
Moreover, these lineages replace each other in regions
where instability approaches the coastal range; spe-
cifically at the mouth of the São Francisco River, at the
Doce River and at the Valley of the Paraíba do Sul
River (Fig. 2D).

Our results support the fact that the distribution of
stable areas of the Atlantic Forest (forest refuges)
does not match stable areas of specific endemic taxa
(taxa refuges), in particular at the southern portion of
the biome. In a previous study, Carnaval & Moritz
(2008) simulated the distribution of forest refuges
and found no important regions of forest stability
in the south-eastern Atlantic Forest (south to the
Doce River, Fig. 2D). However, our simulations with
X. fuscus, and the occurrence of an endemic lineage
of the species in that region (Fig. 1B, lineage SAFS
of Cabanne et al., 2008), suggest that such stable
forests existed. Similar results were obtained by other
studies, like Thomé et al. (2010), Grazziotin et al.
(2006), Porto, Carnaval & Rocha (2012), Fitzpatrick
et al. (2009) and Raposo do Amaral et al. (2013).
Therefore, it seems necessary to consider multiple
evolutionary models for understanding the history
of complex biomes such as the Atlantic Forest as a
whole, perhaps one for each endemic taxon, because a
single general model seems not plausible.

EFFECT OF FOREST TYPES: IS THE PHENOTYPIC

VARIATION A PRODUCT OF DIFFERENT FOREST TYPES?

Our analysis suggests that habitat differences
between the continuous forest and the dry/gallery
forests of the Caatinga and Cerrado are important for
incipient evolution of forest taxa. Only body size
traits were affected in X. fuscus by forest type tran-
sitions. Specifically, we found that in dry/gallery
forest tarsi were shorter (up to 6%), and wing and tail
were longer than in continuous forests (i.e. up to 2.7%
shorter in semi-deciduous forest). This result sup-
ports the prediction that phenotypic change may be
driven by divergent selection across habitats. We
found no gene flow barriers among forests (we con-
trolled for lineage in MANOVAs) while there was an
incipient divergence in phenotypic traits. A similar
result was obtained by Milá et al. (2009) in another
member of the Family Dendrocolaptidae, the wedge-
billed woodcreeper Glyphorynchus spirurus Vieillot
(1819). Milá and colleagues studied ecological diver-
gence along a gradient of altitude and forest types in
the Andes, finding that tarsus length was associated

1058 G. S. CABANNE ET AL.

© 2014 The Linnean Society of London, Biological Journal of the Linnean Society, 2014, 113, 1047–1066

D
ow

nloaded from
 https://academ

ic.oup.com
/biolinnean/article-abstract/113/4/1047/2415834 by guest on 11 M

ay 2020



with altitude and abundance of moss over tree trunks
and branches. They also found that traits related to
flight (wing and tail length) were negatively corre-
lated to tree density. The authors also studied the
genetic population structure of this species finding
that divergence occurred in the presence of gene flow
and that historic isolation was not a good indicator of
divergence in phenotypic traits. They hypothesized
that the phenotypic changes observed in G. spirurus
could have been driven by selection because the tarsi
of birds that hitch trunks (e.g. woodcreepers and
woodpeckers) are expected to be shorter when moss is
less abundant, and also because traits related to
flight should be affected by forest structure. That is,
longer flights are expected in forests with low tree
density than in forests with high tree density
(Winkler & Leisler, 1992), and therefore selection for
longer flight feathers is expected in forests with lower
tree density.

In our study, we found that changes in body size
observed in X. fuscus may have been driven by selec-
tion. This suggestion is supported by studies describ-
ing differences in body size of G. spirurus and of other
birds across forests types (Smith et al., 1997, 2008;
Milá et al., 2009). These studies propose that these
changes were driven by selection across habitats. The
phenotypic changes in G. spirurus and in the other
birds are similar to those found in our focal species.
Longer tails and wings might facilitate longer flights
of X. fuscus through the network of dry/gallery
forests, and longer tarsi might help in climbing
trunks and branches with high abundance of moss
(Zeffer & Norberg, 2003; Milá et al., 2009). Dry and
gallery forests in Cerrado and Caatinga represent,
for continuous-forest taxa such as X. fuscus, an intrin-
sically fragmented and more open system than
semi-deciduous and ombrophilus forests. Forest frag-
mentation reduces resource availability and quality
(e.g. in relation to food, shelter, and nesting places)
and some forest birds respond to it by enlarging their
home ranges, including several habitat fragments
and gallery forests (Hansbauer et al., 2008). Accord-
ingly, X. fuscus may have larger home ranges in these
forests than in continuous forest, a situation that
would require longer flights and might select for
longer flight feathers (Winkler & Leisler, 1992; Smith
et al., 1997, 2008). Similarly, abundance of moss over
trunks and branches, which is highly dependent on
overall humidity conditions, is lower in gallery and
dry forest than in humid coastal and continuous
forests (Cabanne, unpubl. data; Veloso, 1991). Lower
abundance of moss can, in turn, select for shorter
tarsi in gallery and dry forests. Thus, phenotypic
changes observed in X. fuscus might have
been induced by the mentioned differences between
forests, and a comparison of home ranges and flight

behaviour between regions might contribute to test
this hypothesis.

The process of divergence across the continuous
forests, and the dry and gallery forests of Cerrado and
Caatinga might also have been important for diver-
sification at biological levels deeper than the differ-
entiation found within species. The open vegetation
corridor and its network of dry/gallery forests are
contiguous with the Atlantic and Amazon forests,
and also, in some locations, with the Andean humid
forests. There are several taxa that occur in both
continuous and gallery forest habitats that might
have diverged across the ecotone in the presence
of gene flow. For example, the pair of sister
species Thamnophilus ruficapillus Vieillot (1816) and
T. torquatus Swainson (1825) (Brumfield & Edwards,
2007), which are mainly differentiated by plumage,
may have diverged by selection in different habitats.
Thamnophilus ruficapillus is the darkest and occurs
in lower growth, borders, and secondary growth forest
in the Atlantic Forest and tropical forests of the
Andes; whereas T. torquatus occurs in scrubs and
lower growth forest in the Cerrado and Caatinga.
Another example of interspecific differentiation might
be the pair of sister taxa Syndactyla rufosuperciliata
Lafresnaye (1832) and S. dimidiatus Pelzeln (1859)
(Derryberry et al., 2011), the former being found in
the Atlantic and Andes forests and the latter from
gallery forests of the Cerrado. Finally, another similar
situation might be the pair Basileuterus culicivorus
Deppe (1830) and B. hypoleucus Bonaparte (1850).
The former is the darkest species and occurs in most
of the forested regions of the Neotropics, whereas
the latter occurs in forest borders and scrubs of the
Cerrado. However, these species are not reciprocally
monophyletic (Vilaça & Santos, 2010), plumage dif-
ferentiation is subtle, and they hybridize (Robbins,
Faucett & Rice, 1999).

We did not find evidence for forest type as a factor
related to variation in plumage traits, opposite to
what was expected according to our working hypo-
thesis and a study with another Atlantic Forest
woodcreeper, Dendrocolaptes platyrostris (Cabanne
et al., 2011). One explanation could be that both
D. platyrostris and X. fuscus have different geo-
graphic distributions and microhabitats in dry/gallery
forest, and therefore selection pressures over plumage
might be stronger in D. platyrostris. Xiphorhynchus
fuscus only marginally penetrates the gallery and dry
forests of the open vegetation corridor (Fig. 1A), while
D. platyrostris inhabits these forests in most of
the open vegetation corridor (Silva, 1996). Moreover,
D. platyrostris also inhabits forested savannas with
low tree density and palm savannas of the Chaco
region (Cabanne, unpubl. data). Therefore, it is
expected that the X. fuscus population from the dry/
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gallery forests will be smaller than the population
from the continuous forest, and thus absolute gene
flow from continuous forest to dry/gallery forest might
be high enough to preclude local adaptations in
the later forest. However, we cannot rule out that
this lack of evidence for forest type to be related to
plumage traits may be due to low statistical power of
the analysis (Table 2).

VIOLATION OF BERGMANN’S RULE?

Even though the evaluation of ecogeographical rules
was out of the scope of this study, it is worth noting
that our focal species violated Bergmann’s rule,
because larger individuals occurred in northern
warmer regions instead of southern colder regions
(Zink & Remsen, 1986) (Fig. 4B, C). A possible expla-
nation for this result might be that northern popula-
tions inhabit the region with the most seasonal and
dry climate of the X. fuscus range. Specifically, north-
ern birds (subspecies atlanticus) occur in the coastal
forests and in small relicts of humid forests located
in highlands surrounded by dry seasonal forests
(Caatinga). The overall climate of the Caatinga is dry,
with rainy seasons shorter than 3 months and with
300–600 mm average rainfall each year [except for
highland areas and close to the sea, where up to
2000 mm could be registered in a year (Prado, 2003)].
If we abide by an alternative definition of Bergmann’s
rule, body size may follow not only temperature
but also seasonality of climate, or of other important
resources such as water and food availability (Boyce,
1979; Lindstedt & Boyce, 1985; Murphy, 1985).
Xiphorhynchus fuscus is a humid forest bird, but
atlanticus inhabits a region where rain seasonality
is very strong, while central and southern Atlantic
Forest populations occur in regions with higher rain-
fall, with shorter or no dry season. Even though
atlanticus is restricted to the most humid forests
within the Caatinga, it might be affected in some way
by the overall seasonality of the regional climate.
Then, the larger body sizes found in northern regions
might be a result of adaptations to a strong dry
season, as occurs in some other organisms (Murphy,
1985). Also, and regarding our initial questions about
which factors affected phenotypic traits (if stochastic
or deterministic), the fact that body size traits seem
to follow seasonal environmental conditions supports
the idea that such traits evolved by deterministic
factors.

XIPHORHYNCHUS FUSCUS ATLANTICUS SHOULD BE

CONSIDERED A FULL SPECIES

Subspecies atlanticus should be considered an inde-
pendent evolutionary lineage and therefore a full

species according to the General Lineage Species
concept, which is in accordance with CBRO (2014).
X. fuscus atlanticus can be differentiated by plumage
(Figs 3, 5) and body size (Figs 6, 7), and a previous
study showed that it is monophyletic and completely
isolated from the other con-specific populations
(Cabanne et al., 2008). Subspecies atlanticus is the
darkest and most brownish population and the only
one presenting plain under-tail coverts (Table A3). In
relation to body size (Table A4), X. fuscus atlanticus
represents the population with the largest birds. The
other populations have a bill 7.5–14% smaller than in
atlanticus, as well as wing and tail length 5–10%
smaller and tarsi 2.5–9% smaller than the ones found
in atlanticus (Fig. 6).

Other species concepts such as the phylogenetic
and the biological species concepts can also be used
to recognize atlanticus as a species, because it is
monophyletic and completely genetically isolated
(Cracraft, 1983; Cabanne et al., 2008) (Fig. 1B). The
other subspecies can be differentiated by plumage or
body size measurements (e.g. subspecies tenuirostris,
Figs 3, 6). However, they do not represent independ-
ent evolutionary lineages because they are not
monophyletic, they share high levels of gene flow
among each other (Cabanne et al., 2008), and are part
of a continuous latitudinal cline of colour and body
size (Fig. 4 and Supporting Information, Figures S1
and S2). A similar conclusion can be drawn for the
three phylogenetic lineages aside from atlanticus
(Fig. 1B). Therefore, we do not suggest considering
them as full species under any species concept.

Our conclusions regarding the phenotypic variation
of subspecies brevirostris should be considered with
care because the size of the studied sample is small.
However, because our previous genetic study indi-
cated that brevirostris is not monophyletic (Cabanne
et al., 2008), we do not believe that studying a larger
sample would change its taxonomic status.

CONCLUSIONS

Our current results, together with our previous analy-
ses, indicate that vicariant events were significant
factors for the evolution of phenotypic characters of a
forest bird such as X. fuscus, but only when isolation
was complete. The analyses also suggest that forest
heterogeneity can promote incipient evolution in the
Atlantic Forest, perhaps by means of divergent selec-
tion across regions. Also, forest instability during the
Pleistocene may have led to the evolution of pheno-
typic traits.

Our study suggests that not all historic events of
the Atlantic Forest which affected the evolution of
phylogeographic patterns, affected in turn the evolu-
tion of phenotypic traits in the same direction and
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with the same intensity. Natural selection must also
have played a major role in the evolution of Atlantic
Forest organisms.
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APPENDIX
Table A1. Studied plumage characters of Xiphorhynchus fuscus. Colour definition is according to Munsell Color Company
(2000). Hue, value/chroma and colour name are presented

Characters Description of characters and states*

CChead Characteristics of contour feathers of the crown, central feather region. State 1, 10YR 2/2 (very dark
brown); State 2, 7.5YR 3/3 (dark brown) to 3/1 (very dark grey); State 3, 10YR 2/1 (black); State 4,
5YR 6/8 (reddish yellow)

CEXhead Characteristics of contour feathers of the crown, external feather region. State 1, 10YR 6/6 (brownish
yellow); State 2, 10YR 7/3 (very pale yellow); State 3, 10YR 7/4 (very pale brown)

Throat Throat contour feathers. State 1, 10YR 6/6 (brownish yellow) to 7/4 (very pale brown); State 2, 10YR
8/3 (very pale brown); State 3, 10YR 7/6 (yellow)

PCchest Characteristics of contour feathers of the chest, central feather region. State 1, 10YR 6/6 (brownish
yellow); State 2, 10YR 8/3 (very pale brown); State 3, 10YR 7/6 (yellow), State 4, 10YR 7/4 (very pale
brown), State 5, 10YR 7/3 (very pale yellow)

PEXchest Characteristics of contour feathers of the chest, external feather region. State 1, 10YR 4/4 (dark
yellowish brown); State 2, 2.5Y 3/3 (dark yellow brown); State 3, 2.5Y 4/3 (olive brown), State 4, 2.5Y
5/4 (light olive brown)

MCmantle Characteristics of contour feathers of the mantle, central feather region. State 1, 7.5YR 3/3 (dark
brown) to 4/4 (brown); State 2, 7.5YR 3/4 (dark brown); State 3, 7.5YR 4/6 (strong brown)

MEXmantle Characteristics of contour feathers of the mantle, external feather region. State 1, 10YR 6/6 (brownish
yellow) to 6/4 (light yellowish brown); State 2, 10YR 8/3 (very pale brown); State 3, 10YR 7/6 (yellow)

Tail Tail colour. State 1, 10R 3/4 (dark red); State 2, 10R 3/6 (dark red)
Pchpattern Overall chest patterns. State 1, scaled; State 2, scaled/striated. State 3, striated. State 4, strongly

striated
Under-tail Overall pattern of under-tail coverts. State 1, plain pattern; State 2, striated or scaled

*The following specimens of the museums Museu de Zoologia da Universidade de São Paulo (MZUSP), Brazil; Museu
Nacional (MN), Rio de Janeiro, Brazil, were taken as reference for character description: MN24702, MN28084, MN35556,
MN14017, MN26146, MN35980, MN14028, MN20436, MN14035, MZUSP37330, MZUSP37325, MZUSP41659,
MZUSP41161, MZUSP26023, MZUSP34523, MZUSP76121, MZUSP62541, MZUSP75031, MZUSP75046, MZUSP75565,
MZUSP28218.

Table A2. Tissue samples used in this study to obtain sequences of the control region of the mtDNA

Sample* Locality

B1401, B1821, B1822, B1823 Mata do Paraíso, Viçosa, Minas Gerais, Brazil (Br). Lat. −20.773922°, long.
−42.874248°

LGEMAP1433 Botuverá, Santa Catarina (SC), Br. Lat. −27.256987°, long. −49.147655°
LGEMAP1435, LGEMAP1436,

LGEMAP1437
Rio Pequeno das Areias, Serra da Armação, Celso Ramos, SC. Lat. −27.633511°,

Long. −51.337165°
LGEMAP1443, LGEMAP1444 Água Azul, Vicência, Pernambuco, Br. Lat. −7.668423°, long. −35.327456°.
LGEMAP1644 Reserva Biológica Augusto Ruschi, Santa Teresa, Espírito Santo, Br. Lat.

−19.947357°, long. −40.598141°.
LGEMAP1754, LGEMAP1769,

LGEMAP1771, LGEMAP1788
Rancho Queimado, SC. Lat. −27.693350°, long. −48.997675°.

LGEMAP1807 Fazenda Santa Adelia, Jataí, Goiás, Br. Lat. −17.892841°, long. −51.715134°.
LGEMAP1809, LGEMAP1810,

LGEMAP1811
Estação Veracruz, Porto Seguro, Bahía, Br. Lat. −16.12°, long. −39.6°.

FMNH399195, FMNH399196,
FMNH399197, FMNH399199,
FMNH399199

Ibateguara, Alagoas, Br. Lat. −8.354°, long. −35.312°

*Tissue collections: LGEMA – Laboratório de Genética e Evolução Molecular de Aves, Universidade de São Paulo, São
Paulo. FMNH – Field Museum of Natural History, Chicago. B – Instituto de Ciências Biológicas, Universidade Federal
de Minas Gerais, Belo Horizonte.
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SUPPORTING INFORMATION

Additional Supporting Information may be found in the online version of this article at the publisher’s web-site:

Figure S1. Plumage data of the Xiphorhynchus fuscus. Principal components (PC1 and PC2) plots for
subspecies (A) and lineages (B). Full range ellipses are presented.
Figure S2. Body size traits data of the Xiphorhynchus fuscus. Principal components (PC1–PC2–PC3) plots for
subspecies (A) and lineages (B). Full range ellipses are presented.
Table S1. Input file for MAXENT analysis.
Table S2. Diversity of plumage, body size traits and genetic diversity of the Xiphorhynchus fuscus.
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