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Domestication studies traditionally focus on the differences in morphological
characteristics between wild and domesticated populations that are under direct
selection, the components of the domestication syndrome. Here, we consider that
other aspects can be modified, because of the interdependence between plant
characteristics and the forces of natural selection. We investigated the ongoing
domestication of Pourouma cecropiifolia populations cultivated by the Ticuna people
in Western Amazonia, using traditional and ecological approaches. We compared fruit
characteristics between wild and domesticated populations to quantify the direct effects
of domestication. To examine the characteristics that are not under direct selection
and the correlated effects of human selection and natural selection, we investigated
the differences in vegetative characteristics, changes in seed:fruit allometric relations
and the relations of these characteristics with variation in environmental conditions
summarized in a principal component analysis. Domestication generated great changes
in fruit characteristics, as expected in fruit crops. The fruits of domesticated plants had
20× greater mass and twice as much edible pulp as wild fruits. The plant height:DBH
ratio and wood density were, respectively, 42% and 22% smaller in domesticated
populations, probably in response to greater luminosity and higher sand content of the
cultivated landscapes. Seed:fruit allometry was modified by domestication: although
domesticated plants have heavier seeds, the domesticated fruits have proportionally
(46%) smaller seed mass compared to wild fruits. The high light availability and
poor soils of cultivated landscapes may have contributed to seed mass reduction,
while human selection promoted seed mass increase in correlation with fruit mass
increase. These contrasting effects generated a proportionately smaller increase in
seed mass in domesticated plants. In this study, it was not possible to clearly
dissociate the environmental effects from the domestication effects in changes in
morphological characteristics, because the environmental conditions were intensively
modified by human management, showing that plant domestication is intrinsically
related to landscape domestication. Our results suggest that evaluation of environmental
conditions together with human selection on domesticated phenotypes provide a better
understanding of the changes generated by domestication in plants.

Keywords: allometry, Amazonia, domestication syndrome, ecological perspective, environmental effects,
perennial fruit crop
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INTRODUCTION

Plant domestication resulted in populations more useful to
humans and better adapted to cultivated landscapes (Harlan,
1992; Clement, 1999). Although humans have domesticated
populations of many species, currently only 12 annual crops
account for 75% of world food consumption (FAO, 2004). In the
tropics, however, many fruit trees were domesticated in different
degrees (Miller and Gross, 2011; Meyer et al., 2012), and in the
Amazonia, most species with domesticated populations are fruit
trees (Clement, 1999). One of these species is the Amazon tree
grape (Pourouma cecropiifolia, Urticaceae), cultivated principally
in Western Amazonia.

Gonzalo Jiménez de Quesada, in his 1596 expedition in the
Eastern Llanos of Colombia, reported the existence of plantations
of P. cecropiifolia in “gardens of vegetables and fruit plants”
(Patiño, 2002). He describes the trees with “large racemes and
fruits as large as nuts” (Patiño, 2002), indicating that the species
is cultivated and probably domesticated since the pre-Columbian
period. Currently, P. cecropiifolia is especially popular among
the Ticuna people and large plantations are found in swiddens
and fallows around their villages, in the vicinity of Tabatinga
(Brazil), Letícia (Colombia), and Iquitos (Peru), where Clement
(1989) observed several morphological differences in the fruits
between wild and domesticated plants. In this region, the
Ticuna people are still selecting individuals of P. cecropiifolia
that have the largest and sweetest fruits, and removing the
individuals that have smaller and tasteless fruits. Annually, in
the fruiting period, the Ticuna farmers select and propagate the
seeds of the plants with interesting characteristics in cultivated
environments.

Because the species is dioecious (Clement, 1989), only fruiting
trees can be selected and open-pollination from unselected
pollen-donors (and individuals that will be removed later)
slows response-to-selection. Like any crop, P. cecropiifolia is
cultivated in agroecosystems that are quite different from it
wild niche in early and mid-successional forests, so there is
unconscious human selection for adaptation to new ecological
factors. Therefore, P. cecropiifolia domestication is a special
case compared to annual crops that are often under high
intensity selection, because it is a moderately long-lived species,
whose domestication syndrome has been influenced by both
human selection and changes in ecological conditions that
began a long time ago. However, this is a common case in
Amazonia, where perennial plants and landscape domestication
occur at the same time (Clement, 1999). Considering these
points, it is an open question how wild and domesticated
populations of perennial plants, such as P. cecropiifolia, differ
and what are the effects of human selection, environmental
conditions, and their interactions on fruits, seeds, and vegetative
characteristics.

Domestication studies traditionally approach the differences
and variation in morphological and genetic aspects between wild
and domesticated plant populations (Harlan, 1992; Clement,
1999; Miller and Gross, 2011). However, a focus only on
domesticated characteristics can limit the understanding of
the interaction between human selection and natural selection.

Because natural selective forces act on the phenotypes along
with human selection, the set of characteristics that marks
the divergence between domesticated and wild plants, the
domestication syndrome, is probably more diverse than
understood in classic domestication studies (Milla et al., 2015;
Preece et al., 2017). A look at the ecological mechanisms that
continue to act during the domestication process considers
characteristics that are and are not under human selection
and the correlations between characteristics. An ecological
approach also allows the identification of relations between
morphological characteristics and environment conditions,
and evaluation of the integrated effect of domestication and
the environment on phenotypic plasticity of the characteristics
directly or indirectly modified by human selection. Therefore,
considering ecological aspects can generate a more complete and
integrated understanding of the domestication process (Milla
et al., 2015).

In trees, the domestication process begins with population
management in their natural environment (Rindos, 1984;
Smith, 2011). Subsequently, individuals with the most desirable
morphological characteristics are selected and cultivated in
domesticated landscapes (Clement, 1999; Smith, 2011; Levis et al.,
2017). Growing conditions under cultivation and directional
selection lead the domesticated plant populations to diverge
morphologically and genetically from their wild progenitors
(Pickersgill, 2007; Miller and Gross, 2011). The genetic variability
of populations under selection is reduced due to founder events
(Nei et al., 1975) caused by the selection of a few individuals and
a restricted gene pool in the next generation (Miller and Gross,
2011). In contrast, the phenotypic variability of the characteristics
under selection in domesticated populations may increase in
comparison with wild populations (Clement, 1999; Meyer and
Purugganan, 2013). In perennial fruit crops, like P. cecropiifolia,
the average time expected from the beginning of selection to
domestication, when the domesticated characteristics are fixed
in the cultivated populations, is about 3,000 years (Meyer et al.,
2012).

Changes in the morphology of aerial vegetative parts, fruits
and seeds are among the most common characteristics of the
plant domestication syndrome (Meyer et al., 2012). In herbaceous
plants, increases in leaf and whole-plant size are observed
(Milla and Morente-López, 2014). In fruit trees, fruit and seed
“gigantism” is very frequent (Meyer et al., 2012). These changes
in the sizes of useful parts and in the whole-plant occur due
to changes in biomass allocation patterns in and among the
parts under selection (Milla et al., 2015). The increase in certain
plant organs or parts caused by domestication can lead indirectly
to changes in size of other plant parts due to allometric or
biophysical relationships. In this case, any increase in allocation
to an organ should be complemented by a proportional increase
to the other organ or it has a cost to the other organ (Kleyer
and Minden, 2015). Allometric relationships were analyzed in
five herbaceous species and it was observed that plants selected
to have larger leaf areas invested less in leaf blade biomass,
but invested in larger petioles and other supporting structures,
leading to larger plant sizes (Milla and Matesanz, 2017). For
fruits and seeds, some allometric relationships are well known;
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for example, plants that have fruits with larger seeds have a
smaller number of seeds per fruit (Niklas, 1994). However,
to our knowledge, there are no studies about the allometric
relationships in fruit trees to explain the fruit and seed size
changes generated by domestication. The changes in fruit and
seed allometric relationships might be a signature of fruit tree
domestication, and, if observed for several species, can be
a parameter to identify fruit species domestication in future
research.

In addition to human selection, the environmental conditions
where domesticated plants develop also generate selective
pressures that affect their phenotypes (Rindos, 1984; Harlan,
1992). When plants are cultivated, humans modify the
landscape to create environmental conditions that reinforce
the characteristics of interest and that favor the harvesting
process. Farmers typically change soil fertility, light availability
and reduce competition through the thinning of neighboring
plants (Harlan, 1992; Clement, 1999). For example, the increase
in available light and in soil fertility can generate an increase in
the size of fruits, contributing to human interest. This can also
affect other characteristics that are not under human selection,
such as characteristics of leaves and roots, wood density and
plant height, which respond to soil and light conditions and
can be modified indirectly by domestication due to changes in
the environmental conditions caused by human management
in the landscape. Knowledge of local environmental conditions
will help us to evaluate whether they are favorable, unfavorable
or do not interfere with human selection. This will help us
to understand what is a direct result of domestication and
what is a reflection of the interaction between human selection
and environmental variations, which results in a phenotypic
plasticity response (Schlichting and Levin, 1986; Scheiner,
1993; Gratani, 2014). In the case of P. cecropiifolia, the plants
are cultivated principally in terra-firme swiddens and fallows,
where the Ticuna people practice “slash and burn” agriculture
that dramatically modifies ecological conditions, especially
soil fertility and light intensity (Clement, 1999; Jacovak et al.,
2015).

In this study, we investigated the domestication process
of P. cecropiifolia populations in Western Amazonia, where
cultivated populations with large fruits occur in the vicinity
of wild populations in the Amazonian forest. We use the
traditional approach (focused on differences and variation
in morphological characteristics under selection) allied
with an ecological approach (human selection effects on
allometry and the relations of morphological characteristics
with the environment) to answer the following questions:
(i) do domesticated populations have distinct morphological
characteristics in contrast to wild populations located in
adjacent forests and, if so, what is the magnitude of these
differences? (ii) has human selection increased the phenotypic
variability of characteristics under selection in domesticated
populations? (iii) has human selection altered fruit and seed
allometric relationships in domesticated plants? and (iv) what
is the importance of environmental conditions in explaining
the variation in morphological characteristics in wild and
domesticated populations?

MATERIALS AND METHODS

Study Area
This study was conducted in eight Ticuna indigenous
communities, along approximately 400 km of the upper
Solimões River in Western Brazilian Amazonia (Figure 1
and Table 1). The Ticuna people are the largest indigenous
group in Brazil and are distributed in three countries: Brazil,
Colombia, and Peru. In Brazil, their communities are located in
the state of Amazonas and are distributed along both margins
of the Solimões River and its tributaries, where our sampling
was performed. The upper Solimões River was chosen as the
study area because it has a high concentration of cultivated
P. cecropiifolia populations and is considered to be the center
of domestication (Clement, 1989; Clement et al., 2010). In this
region, cultivated populations occur in terra-firme areas and wild
populations occur in adjacent floodplain forests.

Pourouma cecropiifolia
Pourouma cecropiifolia is a fruit tree species that occurs in the
Amazon rainforest, from Western to Central Amazonia. The
species is found in wild conditions in Bolivia, Colombia, Ecuador,
Venezuela, Peru, and Brazil. In Brazil, it occurs in the state of
Acre and in the state of Amazonas. In areas of primary forest,
it occurs mainly in terra-firme forests, but abundance in this
phyto-physiognomy varies within the distribution area of the
species. In the region of upper Solimões River (near the city of
Tabatinga, Amazonas, Brazil), for example, it occurs mainly in
floodplains, being scarce in terra-firme forests. These floodplains
are relatively high floodplains, which are flooded for a period
of 2–3 months, where the maximum level of flooding is around
1.5 m (personal observation in the year 2015). The occurrence
of P. cecropiifolia was not recorded in low floodplains or in
chavascais (almost permanently flooded areas), where there is a
great abundance of pioneers, such as species of the genus Cecropia
(also of the family Urticaceae) and grasses.

The fruiting of the species occurs annually between September
and December (Lopes et al., 1999). The main pollinator agents
of P. cecropiifolia are insects of the family Apidae, Oxytrigona
obscura, Trigona dellatarreana, and Trigona sp. (Falcão and
Lleras, 1980). The seed dispersing agents are mainly small-sized
primates, bats, and humans. It is considered a fruit of easy
propagation, fast growth, precocity and good productivity.
Villachica (1996) reports that, in plantations, the trees begin to
bear fruit at 2 years, reaching an optimum of production between
the fifth and sixth year, with subsequent progressive decrease.

For the Ticuna people, P. cecropiifolia is an important
traditional fruit and a symbolic component of their culture, and is
widely consumed and cultivated in Ticuna fields and agroforests.
Moreover, it is reported in Ticuna myths as a plant associated
with fauna and mythical entities of the forest.

Sampling Design and Characteristic
Measurements
In each of the eight communities, we sampled 10 adult plants
in a terra-firme area under cultivation (domesticated population)
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FIGURE 1 | Pourouma cecropiifolia distribution and abundance in Greater Amazonia, and study area. Large map: abundance in humid areas (orange) and upland
terra-firme areas (green) from the Amazon Tree Diversity Network (data provided especially for this paper by the Dr. Hans ter Steege, responsible of the Amazon Tree
Diversity Network – ATDN, contact: http://atdn.myspecies.info/); gray dots are ATDN sites with no P. cecropiifolia. Occurrence in unspecified ecosystems (black) and
cultivated systems (yellow) without abundance data from Missouri Botanic Garden (MOBOT) database (data available in http://tropicos.org/Name/21300486?tab=
specimens). Small map: the region of the upper Solimões River with paired cultivated (yellow) and humid area (orange) populations.

TABLE 1 | Data of Pourouma cecropiifolia collection sites: population, group (wild, domesticated), village name, city, latitude and longitude.

Population Group Village City Latitude Longitude

Pop1 Wild Umariaçú Tabatinga-AM −4.302899 −69.629657

Pop2 Wild Feijoal Benjamin Constant-AM −4.280075 −69.559837

Pop3 Wild Ourique Tabatinga-AM −4.221143 −69.497459

Pop4 Wild Belém do Solimões Tabatinga-AM −4.059635 −69.489769

Pop5 Wild Vendaval São Paulo de Olivença-AM −3.763386 −69.424958

Pop6 Wild São Francisco do Canimari Amaturá-AM −3.370624 −68.349098

Pop7 Wild Bom Pastor Amaturá-AM −3.331287 −68.179170

Pop8 Wild Lago Grande Santo Antônio do Içá-AM −3.23068 −67.892678

Pop9 Domesticated Umariaçú Tabatinga-AM −4.258134 −69.912832

Pop10 Domesticated Feijoal Benjamin Constant-AM −4.300497 −69.545422

Pop11 Domesticated Ourique Tabatinga-AM −4.037632 −69.528462

Pop12 Domesticated Belém do Solimões Tabatinga-AM −4.026873 −69.500669

Pop13 Domesticated Vendaval São Paulo de Olivença-AM −3.744504 −69.480586

Pop14 Domesticated São Francisco do Canimari Amaturá-AM −3.394355 −68.354718

Pop15 Domesticated Bom Pastor Amaturá-AM −3.465094 −68.229006

Pop16 Domesticated Lago Grande Santo Antônio do Içá-AM −3.105835 −67.987486
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and 10 adult plants in a nearby forested area (wild population);
3 km was the average distance between paired populations.
The paired sampling model follows Dawson et al. (2008), who
studied domestication of Inga edulis in Western Amazonia. For
each individual plant we measured the following morphological
characteristics: (i) number of fruits per bunch (mean of five
bunches), (ii) fruit length (cm), (iii) fruit diameter (cm), (iv) fruit
mass (g), (v) seed mass (g), (vi) peel mass (g), (vii) pulp mass
(g) – by difference (iv – v – vi), (viii) pulp:fruit mass ratio –
ratio vii:iv, (ix) seed:fruit mass ratio – ratio v:iv, (x) diameter at
breast height (DBH) (cm), (xi) plant height (m), to determinate
the (xii) plant height:DBH ratio (m/cm) and (xiii) branch wood
density (g/cm3) (correlation among characteristics are showed
in Supplementary Figure S2). For fruit and seed metrics, we
used two fruits from each of five bunches. DBH was measured
at 1.30 m above ground level. Plant height was estimated using a
hypsometer (Vertex Laser VL400 Ultrasonic-Laser Hypsometer
III, Haglöf of Sweden). Wood density was determined by the
ratio between the dry weight and wet volume of a lateral terminal
branch section, with approximately two centimeters in diameter.
The wood samples had the wet volume measured by water
displacement and were dried for 72 h at 105◦C.

Environmental Conditions
We collected 300-g soil samples in the 0–30 cm layer close
to each tree sampled. The 10 individual samples from each
population were dried, homogenized and mixed in the laboratory
to make a composite sample that represented the soil of each
population. The composite sample was analyzed to evaluate
phosphorus (P), potassium (K), calcium (Ca), and magnesium
(Mg) concentrations (EMBRAPA, 1997). The clay, sand and
silt content were determined by granulometric analysis to
characterize soil texture (EMBRAPA, 1997).

Light availability was estimated for each tree and averaged over
the population. We used the Crown Illumination Index, which
describes the environment luminosity inside the forest, on a scale
ranging from 1, where there is diffuse incident light, up to 4,
where there is direct light on the canopy (Keeling and Phillips,
2007).

Statistical Analyses
To evaluate the morphological differences between domesticated
and wild individuals, we compared the means and amplitudes
of variation of 10 characteristics using Kernel density graphs
and performed an ANOVA between the two groups (wild and
domesticated) for each characteristic, using R software (R Core
Team, 2016). A principal component analysis (PCA) of the
10 morphological characteristics was also used to evaluate the
differentiation between wild and domesticated individuals, and to
evaluate which characteristics are most strongly correlated with
domestication, also using R. To test the multivariate differences
between wild and domesticated individuals, we performed an
ANOVA on the two principal axis of the PCA. To identify
and classify groups of wild and domesticated populations,
we performed a cluster analysis based on Normal Mixture
Modeling, performed with the mclust package (Fraley and
Raftery, 2002; Fraley et al., 2012) in R. We also identified which

group has the greatest phenotypic variability by comparing the
variances between the wild and domesticated populations for
each characteristic.

To evaluate whether domestication altered allometric patterns
of fruit components, we used data from the literature of
74 non-domesticated species with drupe fruits like those of
P. cecropiifolia (Ibarra-Manriquez and Oyama, 1992; Chen
et al., 2010; Shiels and Drake, 2011; Bentos et al., 2012). We
adjusted Niklas (1994) potential regression model (SM = a
FMˆb) of the relationship between fruit mass (FM) and
seed mass (SM) for these non-domesticated species (including
non-domesticated P. cecropiifolia populations), and used this
model for domesticated P. cecropiifolia individuals (n = 80),
performed in the qpcR package (Spiess, 2014) in R. We then
compared their shape factors (a, exponent of the potential
relation between variables) and scaling factors (b, intercept
of the potential relation between variables). The differences
between the two equations were evaluated by the overlap of
the confidence intervals of the shape and scaling values. We
performed a covariance analysis to test the differences in the
relations between seed mass and fruit mass considering the
three groups – wild individuals of P. cecropiifolia, domesticated
individuals of P. cecropiifolia and the other species.

A PCA of the environmental conditions [described above,
plus the sum of bases (K + Ca + Mg), which represents a
fertility index] was used to evaluate the differences between
the environmental conditions of the forest and cultivated sites.
To compare the multivariate differences between forest and
cultivated sites, we performed an ANOVA on the first two
principal axis of the PCA. We evaluate the effect of environmental
conditions on the 10 morphological characteristics through
simple linear regressions using all populations together to
encompass all the environmental and morphological variation
observed in the study. We used the PCA axis that best represented
the environmental conditions to evaluate their relationships with
morphological characteristics. To evaluate the individual effect of
environmental variables, we performed simple linear regressions
between each environmental variable and each morphological
characteristic. All analyses were run in R.

Finally, we constructed a conceptual model to present
an overview of the combined direct and indirect effects of
domestication and environmental conditions on the plant
phenotype.

RESULTS

Morphometry and Domestication
Syndrome
Domestication increased the length, diameter and mass of
fruits, seed mass, pulp mass and pulp:fruit mass ratio.
In contrast, domestication reduced the number of fruits
per bunch, seed:fruit mass ratio (seed:fruit allometry), plant
height:DBH ratio and wood density (Figure 2, Table 2,
and Supplementary Table S1). Domesticated fruits had 20×
greater mass than wild fruits. About 64% of the domesticated
fruit is composed of edible pulp, compared to only 34% in
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FIGURE 2 | Density curves of the variation of the morphological
characteristics of domesticated (dark gray) and wild populations (light gray) of
Pourouma cecropiifolia. Domesticated populations (n = 8, 80 individuals) were
collected in cultivated landscapes and wild populations (n = 8, 80 individuals)
were collected in adjacent floodplain forests, both along the upper Solimões
River, Amazonas, Brazil.

wild fruits (Table 2 and Supplementary Table S1). On the
other hand, the average values of fruits per bunch, seed:fruit
mass ratio, plant height:DBH ratio and wood density were
24.8%, 45.5%, 42.1%, and 21.7% higher in wild populations,
respectively (Table 2 and Supplementary Table S1). We found
significant differences (p < 0.01) between wild and domesticated
populations for all 10 characteristics evaluated (Supplementary
Table S2).

The first axis of the PCA with the 10 morphological
characteristics explained 73.7% of the data variation
highlighting the multivariate differences between wild and
domesticated plants (F = 1794, p < 0.001). The second
axis explained 7.9% of the data variation and did not

TABLE 2 | Values of means and variances per plant group (domesticated and
wild) of the 10 morphological characteristics evaluated in the study for Pourouma
cecropiifolia.

Trait Wild Domesticated

mean Variance mean variance

Fruits per bunch 50.30 97.9369 37.82 48.3784

Fruit length (cm) 1.52 0.0048 2.53 0.0137

Fruit diameter (cm) 1.04 0.0060 2.71 0.0274

Fruit mass (g) 0.45 0.0343 9.41 2.6361

Seed mass (g) 0.16 0.0053 1.67 0.0226

Pulp mass (g) 0.17 0.0050 6.11 1.9019

Pulp:fruit mass ratio 0.34 0.0008 0.64 0.0012

Seed:fruit mass ratio 0.33 0.0027 0.18 0.0003

Plant height: DBH ratio (m/cm) 1.02 0.0145 0.59 0.0097

Wood density (g/cm3) 0.23 0.0003 0.18 0.0005

The bolder values indicate the higher variance between the wild and domesticated
group for each characteristic.

differentiate wild from domesticated plants (F = 0.394,
p = 0.531) (Figure 3). The characteristics most associated
with the domestication syndrome, mass, proportion and
size of fruits and their components (seed and pulp),
were highly and positively correlated (±90%) with axis 1.
Hence, PC1 is the axis that best reflects the domestication
syndrome.

Reinforcing the pattern found in the PCA, the clustering and
classification analysis (Normal Mixture Modeling) distinguished
among groups of domesticated and wild populations for
seven morphological characteristics (Figure 4). Fruit length,
fruit diameter, fruit mass, seed mass, pulp:fruit mass ratio
and seed:fruit mass ratio discriminated two groups, the
domesticated populations and the wild populations. Pulp
mass, however, allowed discrimination of three groups,
dividing the domesticated populations into two groups,
including four populations in and close to Tabatinga,
with higher values of pulp mass than the other four
populations further east in the study area. Using the
clustering and classification analyses, the number of fruits
per bunch, plant height:DBH ratio and wood density
did not differentiate wild populations from domesticated
populations.

Phenotypic Variability of Characteristics
Among the fruit characteristics, fruit length, fruit diameter,
fruit mass, seed mass, pulp mass, and pulp:fruit mass ratio
presented higher variances in domesticated populations,
indicating greater phenotypic variability in these characteristics
in plants under human selection (Table 2). Fruit mass and
pulp mass presented much greater variances within the
domesticated group. The greater amplitude of variation
in these characteristics is also apparent in the density
curves (Figure 2). Number of fruits per bunch, seed:fruit
mass ratio and plant height:DBH ratio presented higher
variances in wild populations, while wood density
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FIGURE 3 | Principal component analysis (PCA) of 10 morphological characteristics of Pourouma cecropiifolia, both wild and domesticated plants (n = 160). Left, a
bivariate plot showing the distribution of individual trees in the multivariate space of morphological characteristics. Right, the correlation between the morphological
characteristics and the first two axes of PCA (PC1 and PC2), the eigenvalues and the proportions of variance explained by each PCA axis. FPB, fruits per bunch; FL,
fruit length; FD, fruit diameter; FM, fruit mass; SM, seed mass; PM, pulp mass; PFR, pulp:fruit mass ratio; SFR, seed:fruit mass ratio; HD, plant height:DBH ratio;
WD, wood density.

presented similar variances in wild and domesticated
populations.

Allometric Changes in Domesticated
Plants
The general allometric model SM = 0.63 FM0.89 (where SM
is seed mass and FM is fruit mass) based on 74 species that
have fleshy fruits with only one seed (including P. cecropiifolia
wild populations) presented a higher value of the shape factor
than the model adjusted to the characteristics of domesticated
individuals (SM = 0.44 FM0.60). There was no difference in
the confidence intervals of the scaling factor between the
equations. In the equation for domesticated individuals the
confidence interval of the scaling factor ranged from 0.35
to 0.55 and in the general equation for 74 wild species it
ranged from 0.52 to 0.74. The confidence intervals of the
shape factor values of the equations did not overlap. In the
equation of domesticated individuals, the confidence interval
of the shape factor ranged from 0.50 to 0.69 and in the
general equation for 74 wild species it ranged from 0.83 to
0.96. This shows that the two equations are different and
that the observed values of seed mass in the P. cecropiifolia
domesticated plants are lower than the values predicted by the
general allometric equation. The seed:fruit mass ratio changed
from approximately 0.9:1 in wild plants to 0.6:1 in domesticated
plants (Figure 5A). In comparison, the correlation between
the observed seed mass and the predicted seed mass by the
model is higher in wild P. cecropiifolia plants (r2 = 0.87)
than in domesticated plants (r2 = 0.66, Figure 5B). In the
ANCOVA, we found significant differences in the intercept
and in the slopes between the groups of other species,
the wild individuals of P. cecropiifolia and the domesticated
individuals of P. cecropiifolia [F(2,215) = 267.14, p < 0.001]. The

interaction between fruit mass and groups was also significant
[F(2,215) = 228.33, p < 0.001], showing that the allometric
relation between seed mass and fruit mass change as a function
of the groups.

Effects of Environmental Conditions on
Characteristics
The environmental conditions where the wild and the
domesticated groups occur in the study area were also very
different from each other (Supplementary Figure S1 and
Supplementary Table S3). The first principle component
explained 91.9% of the data variation, and differentiated
floodplain forests from cultivated sites [F(1,14) = 18.77,
p < 0.001]. The second axis explained 7.3% and did not
differentiate floodplain forests from cultivated sites (F = 3.128,
p = 0.098). Domestication is strongly correlated with variations
in light availability (CII), sum of bases, and calcium, magnesium,
phosphorus, silt and sand (Supplementary Figure S3).
Cultivated sites (terra-firme) have 28% higher light availability,
poorer soils (16x lower sum of bases), and 63% sandier soils
than floodplain forests (right side of Supplementary Figure S1);
the floodplain forest sites have lower light availability and more
fertile silty soils (Supplementary Table S3). Only the clay and
potassium contents were slightly altered in cultivated areas
and are less correlated with domestication (Supplementary
Figure S3).

The environmental conditions had significant effects on all
the morphological characteristics (Table 3). The mass and
dimensions of fruits (Figures 6B–D), seeds (Figure 6E), pulp
(Figure 6F), and pulp:fruit mass ratio (Figure 6G) increase in
environments with higher available light and poorer sandier
soils (Supplementary Figure S4). The number of fruits per
bunch (Figure 6A), seed:fruit mass ratio (Figure 6H), plant
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FIGURE 4 | Separation of Pourouma cecropiifolia populations in groups of
wild and domesticated plants according the mean and variance of seven
morphological characteristics evaluated in this study, using cluster
discrimination from Normal Misture Modeling.

height:DBH ratio (Figure 6I) and wood density (Figure 6J)
increase in environments with less available light and more
fertile silty soils (Supplementary Figure S4). Analyzing only
those characteristics less associated with domestication, we found
a significant increase in wood density due to the increase in
potassium content (Supplementary Figure S4).

DISCUSSION

Using the traditional morphometric approach of domestication
studies, we found higher mean values and greater variability
in the dimensions and mass characteristics of the fruit in
domesticated populations. The vegetative characteristics also
varied, but to a lesser extent than the fruit characteristics.
The domesticated populations showed lower values of plant
height:DBH ratio and wood density than wild populations.
Using an ecological approach, we found marked changes in the
seed:fruit allometric relation. The domesticated fruits have a
lower proportion of seed mass than the wild fruits of the same
species and the fruits of 74 species of non-domesticated plants
with the same fruit type (drupe). In addition, we observed that
the morphological characteristics evaluated in P. cecropiifolia are
influenced by variations in soil and light conditions. However,
it is not easy to dissociate the environmental effect from the
domestication effect, because farmers also created the cultivated
landscapes.

Morphological Characteristics in
Domesticated Versus Wild Populations
The increase in dimensions and mass of fruits and seeds are the
characteristics most modified during the domestication process
of fruit species (Meyer et al., 2012). Domestication in fruit trees
selects extreme phenotypes for size and mass of fruits, and
eliminates phenotypes that differ from the preferred phenotype,
reducing their frequencies in domesticated populations (Zohary,
2004). In P. cecropiifolia, humans selected for fruits with larger
sizes and larger masses than those found in wild populations,
in which large fruits are not favored by natural selection
(McCouch, 2004). Dispersers of wild P. cecropiifolia in the
forest are usually small-sized primates, such as Saguinus mystax,
S. fuscicollis (Knogge and Heymann, 2003), Callimico goeldii,
Saguinus labiatus (Porter, 2001) and Cebus apella (Gómez-
Posada, 2012). Smaller fruits may provide an advantage over large
fruits for dispersal by small-sized primates, because they can be
more easily removed, transported and dispersed (Tanksley, 2004).
On the other hand, in domesticated plants, the larger fruit size
does not have an adverse effect, because humans guarantee the
seeds’ dispersal and the seedlings’ establishment.

The number of fruits per bunch was smaller in domesticated
populations than in wild populations. This negative correlation
between number and size is common in fruit trees (Browning,
1985), due to the reallocation of photoassimilates to fruit size,
which demands a decrease in the number of fruits per bunch for
biomechanical reasons.

Within the domesticated populations we found geographic
variation for fruit size, where a group of populations on the
western side of the sample area had larger fruit than a group of
populations to the east. This finding supports Clement’s (1989)
proposal of a larger-fruited landrace close to the triple frontier
(Brazil, Colombia, and Peru). Whether this extends as far as
Iquitos, Peru, where Ducke (1946) commented on the abundance
and popularity of P. cecropiifolia, remains to be investigated.

The lower mean values found in plant height:DBH ratio and
in wood density can be explained by changes in edaphic and
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BA

FIGURE 5 | Allometric relations between seed mass (SM) and fruit mass (FM) in fleshy fruits with only one seed (drupes) in 74 wild species and in domesticated
Pourouma cecropiifolia. (A) The red curve represents the adjusted equation of Niklas (1994) using the mean values of 74 non-domesticated species (data compiled
from the literature) and the mean value of wild P. cecropiifolia (gray square). The black curve represents the equation using fruit and seed mass values of
domesticated P. cecropiifolia individuals (n = 80). (B) Correlations between the values predicted by the general allometric equation of wild species (A) and the
observed seed mass values of wild and domesticated P. cecropiifolia individuals.

light conditions, which will be better detailed later in the specific
section where the environmental effects on the morphological
characteristics will be discussed. However, it is also possible
that domestication generated a reduction in the height, diameter
and wood density of the trees, due to the reallocation of
photoassimilates to the harvestable product, changing the ratio
between the biomass of the harvestable product (the fruits and
seeds in the case of P. cecropiifolia) and the total plant biomass
(Li et al., 2012). This ratio is called the ‘harvest index,’ and a
negative correlation with plant height is common in many annual
crops, such as rice (Li et al., 2012) and sorghum (Can and

TABLE 3 | Results of the simple regression analyses between morphological
characteristics of P. cecropiifolia populations (wild and domesticated, n = 16) and
environmental conditions (PC1).

Trait Coefficient t-value p-value Adjusted r2

Fruits per bunch −0.044 −1.774 0.103 0.120

Fruit length (cm) 0.004 4.271 <0.001 0.535

Fruit diameter (cm) 0.006 4.027 0.001 0.504

Fruit mass (g) 0.034 4.050 0.001 0.507

Seed mass (g) 0.006 3.927 0.002 0.507

Pulp mass (g) 0.022 3.704 0.003 0.476

Pulp:fruit mass ratio 0.001 3.945 0.002 0.510

Seed:fruit mass ratio −0.000 −3.244 0.006 0.405

Plant height:DBH ratio
(m/cm)

−0.001 −2.587 0.022 0.275

Wood density (g/cm3) −0.000 −2.625 0.020 0.282

The values of the coefficients in bold indicate that the relationship between
the morphological characteristic and the environmental conditions is significant
(p < 0.05).

Yoshida, 1999) due to greater translocation of photoassimilates
from the vegetative tissues to grains (Zou et al., 2003). For
tree crops, this negative correlation is also expected (Cannell,
1985).

Is the Variability in Characteristics Under
Human Selection Higher?
In addition to the morphological differences between wild and
domesticated populations that characterize the domestication
syndrome, phenotypic variability is also expected to be greater
in useful parts (Pickersgill, 2007). This expectation was
observed in domesticated populations of banana (Li et al.,
2013), peach palm (Clement, 1988) and tomato (Tanksley,
2004). Although genetic variability generally decreases in
domesticated populations, phenotypic variability of selected
parts may increase with domestication (McCouch, 2004;
Purugganan and Fuller, 2009) due to dispersal and diversification
after initial domestication (Meyer and Purugganan, 2013).
During the dispersal process, the genetic material under
selection is shared and disseminated among different human
groups with cultural peculiarities, which may have, for
example, different food preferences. This may also promote
diversity in domestication syndromes (Milla et al., 2015).
In the case of domesticated P. cecropiifolia populations,
the Ticuna report fruits with more fibrous pulp and others
whose pulp has higher water content, thus generating large
variation in pulp and fruit mass. However, the Ticuna also
report that they seldom select for the juicier pulp, as the
fruits “explode” when they fall on the ground, a common
occurrence during harvesting, and are unfit for transport or
sale.

Frontiers in Plant Science | www.frontiersin.org 9 March 2018 | Volume 9 | Article 203

https://www.frontiersin.org/journals/plant-science/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/plant-science#articles


fpls-09-00203 March 13, 2018 Time: 16:40 # 10

Pedrosa et al. Amazon Tree Grape Domestication

FIGURE 6 | Relations between the morphological characteristics and the
environmental conditions in wild populations (circles) and domesticated
populations (triangles) of Pourouma cecropiifolia. The x-axis represents the
environmental conditions (axis 1 of the PCA; Supplementary Figure S1),
where higher values indicate higher sand content and light availability typical
of cultivated areas on the terra-firme. Lower values indicate higher soil fertility,
and silt and clay contents typical of floodplain forests.

Alterations in the Seed Mass:Fruit Mass
Allometry
Humans selected P. cecropiifolia plants to have larger fruits. In
response to selection to increase fruit mass, a faster increase
in pulp mass than in seed mass is expected, resulting in fruit
with a higher relative proportion of pulp (Martinez et al., 2007;
Chen et al., 2010). The increase in pulp mass in P. cecropiifolia is
mainly due to the increase in carbohydrates (fibers, cell walls, and
starch) (Lopes et al., 1999). Due to the correlation among fruit
components, the increase in fruit mass also leads to an increase
in seed mass. However, the seeds of domesticated P. cecropiifolia

do not follow the same tendency of increase observed in wild
plants (MS ∼ MF0.89; Niklas, 1994). Seeds contain proteins and
oils, which are energetically more “expensive” than carbohydrates
(Lopes et al., 1999). Therefore, it is likely that seed mass does not
increase in the same proportion as fruit mass in domesticated
plants, because the highest selective pressure is on the fruit, which
responds with more carbohydrates, and not on the seed, which
needs to retain a balance of proteins, carbohydrates, and oils to
guarantee good germination.

The Effects of Environmental Conditions
and Their Relations With Domestication
Contrary to expectations for the variation in dimensions and
mass of fruits and their components in response to edaphic
conditions (Janick and Paull, 2008), we found fruits with larger
masses and dimensions, and larger masses of seed and pulp in
the domesticated populations, which occur in soils 16x poorer
in nutrients and 63% sandier than floodplain soils, where wild
populations occur. Having larger fruits with larger seeds and
pulp mass in poorer and sandier soils is an indication that
the domesticated phenotype is mainly a result of alterations in
the genotype resulting from domestication, considering that for
P. cecropiifolia the fruit characteristics are the most important for
humans and are under direct human selection. The increase of
fruit dimensions may have been due to the preferential selection
of trees with large fruits and the elimination of trees with small
fruits (Zohary, 2004). Considering that the size of the plant affects
biomass allocation (Milla and Matesanz, 2017) and considering
that the high light availability of the cultivated environment
where the domesticated populations of P. cecropiifolia grow
generates a decrease in the total size of the plant, it is possible
that there is a trade-off that may have led to a lower allocation
to vegetative parts and a higher allocation to reproductive
organs, as is typical of changes in harvest index (Li et al.,
2012).

The subtle variations in vegetative characteristics suggests that
they are not under direct selection. These changes are possibly
results of changes in the environmental conditions caused by
human management, an indirect effect of domestication (Harlan,
1992; Zohary, 2004) (Figure 7). Due to high light availability
in cultivated landscapes, the plants of domesticated populations
invested less in growth in height, because the competition with
other plants for light is smaller when compared to individuals
in forest landscapes that have smaller canopy openings (Cannell,
1985). With the greater light availability in the cultivated
environment, domesticated plants possibly grow faster than wild
plants, and consequently have lower wood density (Poorter, 1999;
Poorter et al., 2008). The plant height:DBH in domesticated
plants is also affected by the sandier soils of the cultivated areas.
Sandy soils maintain less water and nutrients due to their lower
surface areas (Tarboton, 2003), which affects water supply in dry
seasons.

Under natural conditions, wild P. cecropiifolia plants produce
proportionately larger seeds due to the difficult conditions
of establishment in the shaded understory, as observed in
other forest species (Salisbury, 1974; Westoby et al., 1996). In
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FIGURE 7 | Diagram showing how domestication can influence plant phenotype via direct selection on plant characteristics (human selection) or via modification of
environmental conditions (landscape domestication). The continuous arrows represent the direct effects of domestication by human selection on Pourouma
cecropiifolia morphological characteristics. The dashed arrow represents the indirect effect of domestication, promoted by human management of environmental
conditions (landscape domestication).

cultivated landscapes where the P. cecropiifolia domesticated
plants grow, the low fertility of cultivated soils (Westoby et al.,
1990; Hammond and Brown, 1995) and the high light availability
promote reduction of seed mass (Eriksson et al., 2000; Moles
et al., 2005). In contrast, human selection for larger fruits
and the positive correlation between fruit mass and seed mass
promote an increase in seed mass in the domesticated plants.
Therefore, the combined but contrasting environmental effects
and human selection lead domesticated populations to have
a proportionately smaller increase in seed mass than wild
populations.

By evaluating individually the variables not correlated
with landscape domestication, it was possible to observe
which morphological changes are effectively responding to
environmental variations. The positive correlation between wood
density and potassium content in the soil, and the existence of one
domesticated population with wood density similar to the wood
density of the wild populations, in a site with a high potassium
content, shows the environmental effect on the phenotypic
plasticity of the P. cecropiifolia individuals. This suggests that,
although the effect of environmental conditions in cultivated
landscapes can be superimposed on the domestication effect, we
cannot ignore the plastic capacity of individuals in explaining the
morphological variations of plants under human selection.

Due to the difficulty in dissociating the effect of environmental
conditions from the effect of human selection, we suggest that
reciprocal transplant experiments of domesticated plants to

uncultivated landscapes and wild plants to cultivated landscapes
will be needed to effectively differentiate domestication effects
from environmental effects. In addition, we consider that in
future studies it will be necessary to evaluate experimentally
the effect of luminosity on fruit mass, seed mass and in
seed:fruit allometry considering the high light availability in
cultivated landscapes and because it is expected that there is
a positive correlation between light intensity and fruit mass
(Moles et al., 2005; Janick and Paull, 2008), but a negative
correlation with seed mass (Eriksson et al., 2000; Moles et al.,
2005).

In this study, the domesticated phenotype is a result of a
combination of human selection and environmental conditions
in the sites where the plants are cultivated. We observed strong
environmental modification created by humans in cultivated
landscapes that is exacerbated by the fact that wild populations
occur in flooded areas, while domesticated populations occur
in upland areas. These changes in environmental conditions
between natural and cultivated sites, in addition to genetic
selection by humans, promoted the phenotypic changes in
domesticated populations. However, the forces of genetic
selection through human management and of natural selection
through environmental conditions are intrinsically mixed
and discriminating the magnitude of each component, and
the environment by genotype interaction, requires a well-
designed common garden experiment (Falconer and Mackay,
1996).
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CONCLUSION

Addressing ecological aspects in plant domestication studies
provides us with a more integrated understanding about
the evolution of cultivated plants, because the domesticated
phenotypes are the result of the combined effects of human
selection and natural selection on plant populations. We
quantified modifications in numerous components of the
domestication syndrome of P. cecropiifolia populations in
Western Amazonia. The domesticated plants presented
substantial changes in the morphology of their fruits and
seeds, and more subtle changes in vegetative characteristics.
The combined effect of natural selection and human selection
modified the expected pattern in the allometric relations between
seed mass and fruit mass, due to the contrasting effects of
environmental filters, which promote seed size reduction,
and human selection, which promotes seed size increase. The
strong correlation between domestication and environmental
conditions due to changes in the landscape generated by human
management made it difficult to separate environmental effects
from human selection effects. The evaluation of the effects
of environmental conditions and of human selection and
management in cultivated landscapes are important for a better
understanding of the domestication syndrome. We suggest that
the allometric differences between fruits and seeds of wild and
domesticated plants can be used in future studies, as an additional
parameter of the domestication syndrome.
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