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SUMMARY
It has been one and a half centuries since Enrico Sertoli published the seminal discovery of the testicular ‘nurse cell’, not only a

key cell in the testis, but indeed one of the most amazing cells in the vertebrate body. In this review, we begin by examining the three

phases of morphological research that have occurred in the study of Sertoli cells, because microscopic anatomy was essentially the

only scientific discipline available for about the first 75 years after the discovery. Biochemistry and molecular biology then changed

all of biological sciences, including our understanding of the functions of Sertoli cells. Immunology and stem cell biology were not

even topics of science in 1865, but they have now become major issues in our appreciation of Sertoli cell’s role in spermatogenesis.

We end with the universal importance and plasticity of function by comparing Sertoli cells in fish, amphibians, and mammals. In

these various classes of vertebrates, Sertoli cells have quite different modes of proliferation and epithelial maintenance, cystic vs.

tubular formation, yet accomplish essentially the same function but in strikingly different ways.

INTRODUCTION
The 150th year anniversary of the publication reporting the

discovery of the Sertoli cell is to be celebrated (Sertoli, 1865).

Although Enrico Sertoli (Fig. 1) went on to explore numerous

other subjects, including physiology of blood proteins, tissue

carbonic acid in the respiratory system and smooth muscle con-

traction, he was given the highest honor for his study of the

human testis, when Von Ebner first called these cells, ‘the Sertoli

cells’ (Ebner, 1888). Research on the Sertoli cell started out

slowly, with only about 25 manuscripts published up to 1950.

However, rapid advancement in our knowledge of this unique

cell was soon realized with the invention of the electron micro-

scope and discoveries of DNA, RNA and new methods of bio-

chemistry, which permitted the incorporation of histochemistry

and immunochemistry in molecular biology studies (see Table 1

for timeline of advances). Now there are nearly 500 papers pub-

lished each year describing the intricate relationships estab-

lished by Sertoli cells in the testis. Presented here are highlights

that emphasize the superb scientific beauty and intrinsic plastic-

ity of the cell, to which three books and numerous reviews have

been devoted (Russell & Griswold, 1993b; Skinner & Griswold,

2005; Griswold, 2015b) (See Table 2 and Supplement Table S1

for lists of important reviews and books). In this brief review, we

first present the basic structure of the Sertoli cell and then show

how molecular biology has given us insight into the complicated

mechanisms involved in its nurse cell function. We then discuss

how this information is applied to current ongoing studies on

the role of Sertoli cells in the spermatogonial stem cell niche and

in the maintenance of testicular immune privilege. Finally, a

comparative view across vertebrate species is summarized to

show common but also divergent pathways that have developed

to allow the same cell to establish its germ cell interactions in

both cystic and tubular modes of organization. Our review can-

not be totally inclusive but will highlight the passionate pursuits

of the authors in the hope that we can stimulate even more

interest in the complexities and importance of the Sertoli cell.

MORPHOLOGY OF THE SERTOLI CELL
Morphological studies of the Sertoli cell have gone through

three phases of investigation (Fig. 2), beginning with routine

light microscopy (LM), which lasted until about 1960. The next

phase began after the invention of the electron microscope
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(TEM), which was used to record higher resolution images of

Sertoli cell organelles and membranes, and lasted until about

2000. The final phase has been immunohistochemistry and

immunofluorescence (Hess & Vogl, 2015), which began prior to

2000, but has gradually become the major tool for localizing

specific proteins in the testis (Hogarth & Griswold, 2013) and

three-dimensional imaging of Sertoli–germ cell interactions

(Fig. 3).

Figure 1 Photo of Professor Enrico Sertoli, published in honor of his retire-

ment after 36 years of teaching and research (Negrini et al., 1908) and

drawings (Sertoli, 1865) from Sertoli’s original publication (Fig. 1A–D).

Table 1 Significant Sertoli cell milestones

1865 Enrico Sertoli’s first publication (Sertoli, 1865)

1888 The branched cells first called ‘Sertoli cells’ (Ebner, 1888)

1899 Sertoli and germ cells thought to have common origin (Regaud, 1899)

1901 Sertoli cells thought to be syncytial (Regaud, 1901)

1901 Sertoli cells phagocytize degenerative germ cells (Regaud, 1901;

Clermont & Morgentaler, 1955; Russell & Clermont, 1977)

1902 Sertoli cells do not divide in adult testis (Ebner, 1888)

1942 Sertoli cell tumors or tubular adenomas described (Innes, 1942)

1948 ‘Sertoli cell only’ syndrome first described (Heller et al., 1948)

1949 Sertoli cells produce estrogen (Teilum, 1949; Armstrong et al., 1975)

1950 Cyclical changes in Sertoli cell morphology (Elftman, 1950; Leblond &

Clermont, 1952; Br€okelmann, 1963; Kerr & De Kretser, 1975)

1952 Description of changes in Sertoli cell nucleus by Stage (Leblond &

Clermont, 1952)

1956 First Electron Microscopic description; Sertoli cells are not syncytial

(Fawcett & Burgos, 1956)

1963 Silver method used to show changes in Sertoli cell cytoplasm

morphology by Stage (Elftman, 1963)

1964 First primary cultures of Sertoli cells (Steinberger et al., 1964;

Steinberger & Steinberger, 1970)

1965 Sertoli unique nucleolus and heterochromatin (Monesi, 1965; Jean et al.,

1983)

1967 Junctional Specializations described (Flickinger & Fawcett, 1967)

1967 Blood–testis barrier defined physiologically (Setchell, 1967)

1968 Sertoli cell as a major factor in testicular secretions (Setchell et al., 1968;

Setchell, 1974)

1969 Sertoli cell role in spermiation ultrastructure (Fawcett & Phillips, 1969;

Russell, 1984)

1970 Sertoli cell nucleolus used as a constant for counting cells

(Bustos-Obregon, 1970)

1970 Blood–testis barrier defined ultrastructurally between Sertoli cell

junctions; basal and adluminal compartments described

(Dym & Fawcett, 1970)

1970 Sertoli cell toxicant described (Kierszenbaum, 1970)

1970 Sertoli cell secretion of fluid (Setchell, 1970; Setchell et al., 1978;

Wilson & Griswold, 1979)

1972 Transillumination allowed first biochemical studies of the cyclic activities

(Parvinen & Vanha-Perttula, 1972)

1975 First detailed review of Sertoli cell ultrastructure (Fawcett, 1975)

Table 1 (Continued)

1975 FSH regulation of Sertoli cells (Tung et al., 1975; Fritz et al., 1976;

Means et al., 1976; Griswold, 1993a)

1975 Sertoli cell production of androgen-binding protein (Sanborn et al.,

1975; Tindall et al., 1975; Fritz et al., 1976)

1976 Tubulobulbar complex described (Russell & Clermont, 1976)

1977 Sertoli ectoplasmic specialization junctions named (Russell, 1977)

1979 Golgi of Sertoli cell in 3-D (Rambourg et al., 1979)

1979 Sertoli cell production of inhibin (Sertoli cell factor) (Chowdhury et al.,

1978; Labrie et al., 1978; Demoulin et al., 1979; Steinberger, 1979)

1980 Sertoli cell volume is enormous (Roosen-Runge, 1955; Cavicchia & Dym,

1977; Weber et al., 1983; Wong & Russell, 1983; Russell et al., 1986,

1990b; Kerr, 1988a,b; Sinha Hikim et al., 1989)

1980 Sertoli cell production of transferrin (Skinner & Griswold, 1980)

1981 Sertoli cell production of proteins is Stage specific (Lacroix et al., 1981;

Parvinen, 1982; Ritzen et al., 1982; Mather et al., 1983;

Wright et al., 1983)

1982 Sertoli cell proliferation peaks just before birth and ceases at puberty

(Orth, 1982)

1983 Three-dimensional reconstruction of the Sertoli cell (Russell et al., 1983;

Weber et al., 1983; Wong & Russell, 1983)

1983 Sertoli cell numbers may change in human and horse species (Johnson &

Thompson, 1983; Johnson et al., 1984)

1983 Importance of Sertoli cell microtubules and other cytoskeletal elements

in germ cell transport and attachment (Vogl et al., 1983a,b, 1993,

2008; Vogl & Soucy, 1985; Russell et al., 1989)

1984 Sertoli cell production of anti-Mullerian hormone (Picard & Josso, 1984)

1984 Sertoli cell interaction with peritubular myoid cell (Tung et al., 1984)

1984 FSH increases Sertoli cell proliferation (Orth, 1984)

1986 Sertoli cell production of Cyclic Protein-2 (CP-2) (Wright & Luzarraga,

1986)

1987 Vitamin A deficiency and stage synchronization (Morales & Griswold,

1987)

1987 Sertoli cell production of testibumin (Cheng et al., 1987)

1988 Autoantigenic germ cells located outside blood–testis barrier suggesting
Sertoli cells secrete immunoregulatory factors (Yule et al., 1988)

1989 Sertoli cell production of growth factors (Skinner et al., 1989)

1990 Sertoli cell production of a2-macroglobulin (Cheng et al., 1990)

1990 Discovery of SRY (Koopman et al., 1990)

1991 Sertoli cell expresses Wilms’ tumor gene WT1 (Pelletier et al., 1991)

1993 Transplanted allogeneic Sertoli cells survive and protect islet allografts

(Selawry & Cameron, 1993)

1993 Thyroid hormone contributes to terminal differentiation of Sertoli cells

and testis size (Hess et al., 1993; van Haaster et al., 1993)

1994 GATA1 transcription factor in Sertoli cells (Yomogida et al., 1994)

1996 Sertoli cell production of SOX9 (Kent et al., 1996)

1998 GATA4 transcription factor in Sertoli cells (Viger et al., 1998;

Ketola et al., 1999)

1998 Identification of DMRT1 (Raymond et al., 1998, 1999)

2000 Sertoli cell production of GDNF regulates spermatogonial stem cells

(Meng et al., 2000)

2004 Sertoli cell based gene therapy is proposed (Dufour et al., 2004)

2006 Wt1 is required for Sertoli cell expression of Sox9 (Gao et al., 2006)

2008 Establishment of the SRY/SOX9 axis (Sekido & Lovell-Badge, 2008)

2009 Sertoli cell junctional complex internalization hypothesis

(Young et al., 2009, 2012; Du et al., 2013; Vogl et al., 2013, 2014;

Lyon et al., 2015)

2012 Movement of germ cell syncytium across Sertoli cell tight junction

(Smith & Braun, 2012)

2013 INSR and IGF1R are required for FSH-mediated SC proliferation

(Pitetti et al., 2013)

2015 Retinoic acid initiation of spermatogenesis and the cycle

(Griswold, 2015a)
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Sertoli cell morphology represents one of the most complex,

three-dimensional structures in cell biology and yet Enrico Ser-

toli made his historical observations without the benefit of a

good fixative, thin sections of embedded testicular tissues and

histological stains that are now common laboratory tools.

Nevertheless, he was able to describe unique branches of the

cell’s cytoplasm that supported germ cell development and the

nucleus with a large nucleolus (an important morphological fea-

ture that is used for cellular recognition today). Sertoli suggested

that these cells were individual, but others claimed that they

Table 2 Major reviews of the Sertoli cell

Sertoli Cell Booksa

1993 The Sertoli Cell (Russell & Griswold, 1993b)

2005 Sertoli Cell Biology I (Skinner & Griswold, 2005)

2015 Sertoli Cell Biology II (Griswold, 2015b)

Reviews of the Sertoli Cell

1865 Enrico Sertoli published the ‘cellule ramificate’ (Sertoli, 1865)

1865–1965 Sertoli cell named (Ebner, 1888)

Sertoli cell morphology (Regaud, 1899; Heller et al., 1948)

Sertoli cell development (Walker & Embleton, 1906; Montgomery, 1911)

Sertoli cell and the cycle (Elftman, 1963)

1966–1980 Sertoli cell ultrastructure (Fawcett, 1975)

Blood–testis barrier (Setchell, 1974; Setchell & Main, 1975)

Sertoli–germ cell interactions; ectoplasmic specialization (Russell, 1980; Russell et al., 1980)

Sertoli cell and FSH (Means et al., 1976; Means et al., 1980)

1981–1990 Sertoli cell morphology; cell junctions; cytoskeleton; spermiation (Tindall et al., 1983; Vogl et al., 1983a; Russell, 1984; Russell & Peterson, 1985;

Clermont et al., 1987; Russell et al., 1987; Kerr, 1988b; Vogl, 1989)

Sertoli cell physiology; hormonal control (Burger & de Kretser, 1981; Ritz�en et al., 1981; Fritz, 1982; Mather et al., 1983; Rich & de Kretser, 1983;

Tindall et al., 1985; Sanborn et al., 1987; Skinner, 1987; Bardin et al., 1988; Griswold, 1988; Griswold et al., 1988; Sharpe, 1988; Ewing & Robaire,

1989; Robaire & Bayly, 1989; Wright et al., 1989; Jegou, 1991)

Sertoli cell through the cycle (Parvinen et al., 1986; Wrobel & Schimmel, 1989; de Kretser, 1990; Ueno & Mori, 1990)

Sertoli cell development (Steinberger & Steinberger, 1987; Magrek & Jost, 1991)

Sertoli cell in vitro (Russell & Steinberger, 1989; Jegou, 1992b)

Sertoli cell pathology and toxicology (Boekelheide et al., 1989)

1991–2004 General review (Jegou, 1992a; Clermont, 1993; Jegou, 1993; Kerr, 1995; Griswold, 1998)

Sertoli Cell Biochemistry and the Cycle (Toppari et al., 1991; Morales & Clermont, 1993; Parvinen, 1993)

Sertoli cell morphology (Pelletier & Byers, 1992; Russell, 1993a; Schulze & Holstein, 1993a; Mulholland et al., 2001)

Sertoli cell cytoskeleton and germ cell translocation (Vogl et al., 1991; Vogl et al., 1993)

Blood–testis barrier (Pelletier & Byers, 1992; Grier, 1993; Lui et al., 2003; Wong & Cheng, 2005)

Sertoli-germ cell communication (Jegou, 1991, 1993; Mullaney & Skinner, 1991; Vogl et al., 1991, 2000; Byers et al., 1993a,b; Russell, 1993b,c;

McGuinness & Griswold, 1994; Griswold, 1995; Cheng & Mruk, 2002; Mruk & Cheng, 2004a,b)

Sertoli cell physiology (Jegou, 1992a; Josso, 1992; Sharpe, 1992; Dorrington & Khan, 1993; Griswold, 1993a,c; Heckert & Griswold, 1993;

Hinton & Setchell, 1993; Kim & Wang, 1993; Sar et al., 1993; Sharpe, 1993; Skinner, 1993b; Sylvester, 1993; Dym, 1994; Andersson, 2001; de

Kretser et al., 2001; Silva et al., 2002; Walker, 2003b)

Sertoli cell secretions (Fritz et al., 1993; Griswold, 1993b; Skinner, 1993a; Sylvester, 1993; McKinnell et al., 1995)

Sertoli cell in vitro (Jegou, 1992b; Djakiew & Onoda, 1993; Steinberger & Jakubowiak, 1993; Dym, 1994)

Sertoli cell development (Gondos & Berndston, 1993; Pelliniemi et al., 1993; Orth et al., 2000; Walker, 2003a; Brehm & Steger, 2005)

Sertoli cell pathology and toxicology (Boekelheide, 1993; Schulze & Holstein, 1993b; Jegou et al., 2000; Sharpe et al., 2003; Toyama et al., 2003)

Species comparison (Bartke et al., 1993; Hinsch, 1993; Pudney, 1993; Guraya, 1995; McKinnell et al., 1995)

Sertoli cell and immune system (Dufour et al., 2003a)

2005–2015 Sertoli cell morphology (Hess & Franc�a, 2005; Kerr et al., 2006; O’Donnell et al., 2011; Vogl et al., 2013; Berruti & Paiardi, 2014; Hess & Vogl, 2015;

Lyon et al., 2015)

Sertoli cell biochemistry and the Cycle (Hermo et al., 2010; Griswold, 2015a; Wright, 2015)

Sertoli cell numbers (Johnson et al., 2008)

Sertoli cell intracellular trafficking (Cheng & Mruk, 2009; Xiao et al., 2014b)

Sertoli cell, extracellular matrix, and polarity(Siu & Cheng, 2009; Wong & Cheng, 2009)

Sertoli cell, cytoskeleton, and germ cell interactions (Vogl et al., 2008; Cheng & Mruk, 2010, 2015; Cheng et al., 2010; Hermo et al., 2010;

Kopera et al., 2010; Lie et al., 2010; Mruk & Cheng, 2010; O’Donnell et al., 2011; Su et al., 2013; O’Donnell & O’bryan, 2014; Qian et al., 2014;

Xiao et al., 2014a)

Blood–testis barrier (Mital et al., 2011; Pelletier, 2011; Cheng & Mruk, 2012; Lie et al., 2013; Jiang et al., 2014; Li et al., 2015; Mruk & Cheng, 2015)

Sertoli cell physiology (Brehm & Steger, 2005; Walker & Cheng, 2005; Cheng & Mruk, 2010; Rato et al., 2010; Lucas et al., 2011; Smith & Walker,

2014; Smith et al., 2015)

Sertoli cell and transcriptional regulation (Griswold & McLean, 2005; Lui & Cheng, 2008, 2012; Cheng et al., 2010; Fok et al., 2014; Cheng & Mruk,

2015; Chojnacka & Mruk, 2015; Heckert & Agbor, 2015; Hogarth, 2015; Wright, 2015; Yan, 2015)

Sertoli cell and microRNAs (Ramaiah & Wilkinson, 2015)

Sertoli cell pathology and toxicology (Wong & Cheng, 2011; Brunocilla et al., 2012; Johnson, 2014; Murphy & Richburg, 2014; Gao et al., 2015;

Reis et al., 2015)

Sertoli cell and spermatogonial stem cells (Oatley & Brinster, 2012; Garcia & Hofmann, 2013; Hai et al., 2014; de Rooij, 2015)

Sertoli cells and immune system (Mital et al., 2010; Franca et al., 2012; Kaur et al., 2012, 2014a, 2015)

Sertoli cells and cancer (Oliveira et al., 2015)

Sertoli cell and meiosis (Griswold, 2016)

Sertoli cell and development (Gassei & Schlatt, 2007; Sekido & Lovell-Badge, 2008; Barrionuevo et al., 2011; Jakob & Lovell-Badge, 2011;

Nicholls et al., 2012; Tarulli et al., 2012; Escott et al., 2014; Dong et al., 2015; Loveland & Hedger, 2015; Yang & Oatley, 2015; Yao et al., 2015;

Young et al., 2015)

Species comparison (Schulz et al., 2010; Franc�a et al., 2015)

aSee Table S1 for complete listing.
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were a syncytium (Ebner, 1888), which became a standing con-

troversy that was not settled until 1955, when electron micro-

scopy was able to reveal cellular membranes and junctional

complexes (Burgos & Fawcett, 1955; Zebrun & Mollenhauer,

1960; Fawcett, 1975). Numerous reviews of Sertoli cell morphol-

ogy (Table 2) have provided unique insights into the cell’s inter-

actions within the seminiferous epithelium (Figure S1),

particularly focusing on the following structures: shape of the

nucleus, the thin cytoplasmic arms, the intricate physical associ-

ation with germ cells, the spermatid disengagement complex

and the changes observed in these features over the course of

the cycle of the seminiferous epithelium (Heller et al., 1948;

Elftman, 1963; Flickinger & Fawcett, 1967; Fawcett, 1975; Russell,

1980, 1984, 1993a,b; Wright et al., 1983; Kerr, 1988b; Russell

et al., 1990a; Ueno & Mori, 1990; Morales & Clermont, 1993;

Mruk & Cheng, 2004b, 2010; Hess & Franc�a, 2005; Wong &

Cheng, 2005; Vogl et al., 2008; O’Donnell et al., 2011; Xiao et al.,

2014a; Hess & Vogl, 2015). These morphological features have

contributed significantly to the overall beauty of this ‘cellule

madri’ or ‘mother cell.’

The Sertoli cell nucleus is one of its most distinguishable orga-

nelles (Hess & Franc�a, 2005; Hess & Vogl, 2015). It is large,

euchromatic (Fig. 2), and capable of changing shape throughout

the cycle of the seminiferous epithelium, often exhibiting deep

invaginations (Figure S2) of the nuclear membrane that is sur-

rounded by vimentin intermediate filaments. The nucleolus is

very large and stains intensely (Schulze et al., 1976), with three

distinct parts (tripartite), with most nucleoli have two satellite

chromocenters in rodent species, although three satellite struc-

tures are found occasionally in a small percentage of mice

(Kushida et al., 1993; Guttenbach et al., 1996) and rat Sertoli

cells (Hess & Vogl, 2015). In some species, the satellite chromo-

centers form donut shapes, but these structures often are out of

the plane of section. The nucleus is usually described as residing

near the basement membrane (Russell et al., 1990a); however, in

some species the nucleus can be located higher in the epithe-

lium near the lumen, as is common in stages surrounding sper-

miation in rodents. When staining for Sertoli cell nuclear

proteins, the more apical nuclei are easily recognized, as seen

with the androgen receptor (Fig. 3). However, when a nuclear

protein is present in both Sertoli and spermatogonial germ cells,

such as the E2f family of transcription factors (El-Darwish et al.,

2006), care must be taken, as stages immediately following sper-

miation have fewer spermatogonia and recognition of the Sertoli

cells may require an evaluation of nuclear shape as well as the

presence of a large nucleolus.

Major immunohistochemical markers for the Sertoli cell

nucleus that are commonly used for morphology include the fol-

lowing: androgen receptor (AR) (Sar et al., 1990); SOX9 (SRY-box

containing gene 9) (Frojdman et al., 2000); Wilms tumor pro-

tein-1 (WT1) (Sharpe et al., 2003; Wang et al., 2013); GATA-bind-

ing protein 1 (GATA1) (Chen et al., 2005); GATA-binding protein

4 (GATA4) (McClusky et al., 2009); and cyclin-dependent kinase

inhibitor 1B (p27kip1) (Sharpe et al., 2003). Age-specific expres-

sion of these markers is an important consideration (Hess &

Vogl, 2015), as SOX9 is strong prenatal but decreases dramati-

cally post birth (Frojdman et al., 2000), whereas WT1, is present

in the Sertoli cell nucleus throughout all developmental ages

and AR shows increasing expression after the onset of puberty

(Sharpe et al., 2003). GATA4 is expressed throughout develop-

ment (Kyronlahti et al., 2011) and does not vary with the cycle of

the seminiferous epithelium in the adult. In addition, GATA4 is

not inhibited by the presence of germ cells, which is a problem

with GATA1 expression (Yomogida et al., 1994).

Deep indentations or clefts of the nuclear envelope (Dym,

1973), which are signs of Sertoli cell maturation, are absent

(A) (B) (C)

Figure 2 Three phases observed in morphological studies of the Sertoli cell. (A) Light microscopy (LM). The image is from mouse seminiferous epithelium,

Stage IV (Periodic acid-Schiff’s stain). The Sertoli cell nucleus is euchromatic with a large nucleolus and a single satellite chromocenter. An intimate associa-

tion of germ cells with the Sertoli cell is displayed with pachytene spermatocytes adjacent to the Sertoli cell cytoplasm and heads of elongated spermatids

that are pulled deep into the Sertoli cell crypts and lying next to the apical region of its nucleus. Round spermatids are found near the lumen. Bar = 12 lm.

(B) Transmission electron microscopy (TEM). The tissue is from human testis, showing the Sertoli cell resting on the basement membrane and surrounded

by germ cells. Spermatogonia (Spg); Spermatocyte (Spc). The Sertoli cell has a highly euchromatic nucleus (SCN), a large nucleolus (Nu) with two satellite

chromocenters (Cc) and an indentation of the nuclear membrane (In). Plasmalemma (Pl); Ectoplasmic specialization (Eps) at the blood–testis barrier.

Bar = 5 lm. (C) Immunofluorescence microscopy. The Sertoli cell was isolated in vitro with attached elongated spermatids and labeled for somatic cell-spe-

cific tubulin (green) and filamentous actin (red). Actin is labeled at the ectoplasmic specialization and the intercellular bridges. The microtubules are contin-

uous with the apical regions and around the basal area of the nucleus and directly adjacent to the ectoplasmic specializations, attached to the spermatid

heads that are drawn deep into the Sertoli cell crypts. Bar = 10 lm. Original illustration provided by Dr. A. Wayne Vogl, Department of Cellular and Physio-

logical Sciences, Faculty of Medicine, University of British Columbia, Vancouver, Canada (Vogl et al., 1995). Modified and reprinted with permission of the

Copyright © holder Elsevier.
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during development and often in tubules following the destruc-

tion of the germ cells and in patients with impaired fertility

(Schulze et al., 1976; Hess & Franc�a, 2005). The clefts are difficult

to observe in light microscopy without ultrathin sections (Hess

& Franc�a, 2005) and are rarely observed with immunohisto-

chemical staining. Little is known regarding the function of these

nuclear modifications but they may provide a unique site for

nuclear targeting of specific proteins (Rothbarth et al., 2001).

Other unique aspects of the Sertoli cell nucleus include a high

density of nuclear pores that varies depending on the stage of

spermatogenesis (Cavicchia et al., 1998) and heavy vesiculation

of the nucleoplasm in some species (Pawar & Wrobel, 1991).

The long cytoplasmic arms (branches as described by Sertoli)

wrap the germ cells with very thin structures having widths often

less than 50 nm (Hess & Vogl, 2015). These thin processes, which

form cup-like areas to hold and nurture the germ cells through

their differentiation (Russell, 1993a), are best illustrated by a

plastic three-dimensional model built by Lonnie Russell (Russell,

1993a) and based upon the electron microscopic serial sections

of a single Sertoli cell (Fig. 4). Surface area of the Sertoli cell

plasma membrane is increased dramatically by the extension of

these arms, up to 16,000 lm2, showing tremendous stage-

dependent variation that involves the translocation of numerous

organelles, the expression of hundreds of different classes of pro-

teins for specific functions, and requiring the transport of these

proteins to specific regional positions throughout the cycle of

the seminiferous epithelium (Parvinen, 1982, 1993; Ritzen et al.,

1982; Mather et al., 1983; Wright et al., 1983, 1989; Parvinen

et al., 1986; Kaipia et al., 1991; Toppari et al., 1991; Johnston

et al., 2008; Hess & Vogl, 2015; Wright, 2015). Without an under-

standing of such complex form, it would have been impossible

to comprehend the numerous functional interactions that

depend on the Sertoli cell plasmalemma, such as tight junctional

complexes that comprise the blood–testis barrier, as well as

sperm disengagement (spermiation) and phagocytosis of the

residual body of leftover spermatid cytoplasm (Vogl et al., 2013;

Hess & Vogl, 2015; Lyon et al., 2015).

The intricate physical association that Sertoli cells have with

germ cells begins first with the Sertoli–Sertoli tight junction

(ScTj), which contributes to the blood–testis barrier (Fig. 5). The

barrier is considered to be very tight (Pelletier, 2011), but differ-

ences have been found between in vivo and in vitro conditions,

which were thought to be because of the peritubular myoid and

germ cells contributing to an increase in transepithelial resis-

tance (Mruk & Cheng, 2015). One of the most surprising mor-

phological activities of the seminiferous epithelium is the

(A)

(B)

(C)

(D)

Figure 3 Schematic illustration of the Sertoli cell’s interaction with germ cells at different stages during spermatogenesis and other key functions, including:

(1) transport of micronutrients across the junctional complex; (2) management of waste and recycled leftover cytoplasm during germ cell development; (3)

maintenance of the blood–testis barrier (BTB); (4) establishment of germ cell adhesions and communication; (5) inhibition of immune reactions and mainte-

nance of immune privilege; (6) initiation and response to endocrine signaling pathways; (7) initiation and regulation of the cycle of the seminiferous epithe-

lium; and (8) maintenance of stem cell homeostasis. Most autoimmunogenic germ cells are sequestered within the adluminal compartment of the

seminiferous epithelium behind the BTB, where Sertoli cells surround them. Sertoli cells secrete immunoregulatory factors (5) that modify the immune

response and induce regulatory immune cells such as macrophages (M2) and T cells (Tregs). (A) Actin filaments (green) are seen along the basal Sertoli/Ser-

toli tight junctions but also lining the heads of elongated spermatids; (B) Claudin-11 (red) stains only the basal junctional complex; (C) Actin (green), Rab5

(red) and DAPI (blue for nucleus) show the intricate relationship of these proteins to the tubulobulbar complex; (D) Androgen receptor (brown) stains only

the Sertoli cell nucleus in the hamster seminiferous epithelium. Original illustration provided by Dr. Wayne Vogl (Hess & Vogl, 2015). Modified with

approval of the Copyright © holder for Sertoli Cell Biology, 2nd edition, Elsevier Academic Press.
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passage of preleptotene and leptotene spermatocytes through

the ScTj, performing a complex transit from the basal to adlumi-

nal compartment (Smith & Braun, 2012). Passage of hundreds of

syncytial germ cells occurs without disrupting this important

barrier, requiring a very unique coordination, similar to that of

canal locks opening and closing around a ship. However, the

germ cells remain connected via cytoplasmic bridges that pass

through the tricellular junctions formed by three adjacent Sertoli

cells (Smith & Braun, 2012). The regulation of ScTj proteins and

structure is multifaceted, involving hormones such as androgens

and FSH, cytokines (i.e., TNFa and TGFb), the presence of germ

cells, actin nucleating protein N-WASP (neuronal Wiskott-

Aldrich syndrome protein), and phosphorylation of key proteins

such as the claudins (Mruk & Cheng, 2015). In addition, a basal

tubulobulbar complex has been identified morphologically as a

potential component of the assembly and disassembly that is

required for passage of the early spermatocytes through the ScTj

(Du et al., 2013; Lyon et al., 2015). The current hypothesis is that

this activity provides a remodeling of the intercellular junctions

and disengagement of junctional molecules in the plasma mem-

brane, followed by endocytosis and intracellular trafficking (Du

et al., 2013; Lyon et al., 2015; Mruk, 2015).

Lastly, another unique structural phenomenon of the physical

association of Sertoli and germ cells is the positioning and trans-

port of the elongating spermatids within the seminiferous

epithelium throughout the cycle (Fig. 3). Early steps of elongated

spermatids are attached in the more apical crypts (Figs 2 & 4) of

the Sertoli cell (Meistrich & Hess, 2013) and lengthen perpendic-

ular to the basement membrane. As the spermatids elongate, the

germ cells are transported into deep indentations of the Sertoli

cell, with their heads nearly touching the Sertoli cell nucleus

(Hess, 1990). Finally, the Sertoli cell transports the late step sper-

matids toward the lumen where fully developed spermatozoa

are released during spermiation. This dynamic mobilization of

elongated spermatids is orchestrated by the Sertoli cell through

the use of parallel microtubule tracts and motor proteins

attached to the endoplasmic reticulum component of the ecto-

plasmic specialization (Vogl, 1988; Vogl et al., 1991; Beach &

Vogl, 1999).

Sertoli–Sertoli cell and Sertoli–germ cell attachments are some

of the most elegant and dynamic structures observed with elec-

tron microscopy. Soon after the electron microscope became

popular, it was recognized that the ScTj was unique (Br€okel-

mann, 1963; Flickinger & Fawcett, 1967; Nicander, 1967), first

being called ‘junctional specialization’ by Flickinger and Faw-

cett. Ten years later, Lonnie Russell coined the term

Figure 4 A three-dimensional drawing of a Stage V rat Sertoli cell taken from

a photograph of a plastic model created from 675 micrographs of 372 serial

electron microscopic sections. Cellular processes and cup-like hollows show

the intimate relationship with adjacent germ cells (Wong & Russell, 1983).

Reprinted with approval of the Copyright © holder John Wiley & Sons, Inc.

Figure 5 Electron microscopy of adjacent Sertoli cells showing the tight

junctional complex (Sertoli–Sertoli tight junction) and associated basal ecto-

plasmic specialization. The Sertoli cell plasmalemma is seen between the

two cells, which sit on the basal lamina and a peritubular myoid cell. One

nucleolar chromocenters is noted in the large, euchromatic nucleus.
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‘ectoplasmic specialization’ (ES), linking the ScTj with a narrow

band of actin filaments and endoplasmic reticulum on both

sides of the adjoining cell membranes (Russell, 1977). This exclu-

sive structure displayed its plasticity by also appearing as a Ser-

toli cell component of the Sertoli-spermatid germ cell junctional

attachment site, forming apical ectoplasmic specializations fac-

ing the germ cell at the edge of the very narrow cytoplasmic

arms that surrounded forming spermatid heads (Fig. 6) (Xiao

et al., 2013; Gungor-Ordueri et al., 2014; Hess & Vogl, 2015; Li

et al., 2015; Mruk & Cheng, 2015). The basal ES is part of the

blood–testis barrier, along with the proteins and structures asso-

ciated with the junctional complex (tight, gap and desmosome).

Actin filament proteins are probably the most abundant and

easily visualized component of the ES (Fig. 3) with an abun-

dance of binding, adaptor, and linking proteins that coordinate

this unique plasma membrane structure, whereas vimentin fila-

ments attach to the desmosomes (Mruk & Cheng, 2015).

Another fascinating structure that participates in the Sertoli–

germ cell physical juncture is the tubulobulbar complex, first

described by Lonnie Russell (Russell & Clermont, 1976) as an

anchoring device. Tubulobulbar complexes are elongated tubu-

lar extensions of one cell into corresponding invaginations of the

adjacent cell plasma membrane, terminating with a bulb that is

associated with cisternae of endoplasmic reticulum (Vogl et al.,

2013). These intimate structures are located at both the basal ES

between adjacent Sertoli cells (as discussed with the ScTj above)

and at the apical tips of Sertoli cell cytoplasm, within the con-

cave area of the heads of late spermatids (Fig. 3; Figure S1).

More recent discoveries have supported an important role for

these complexes in the disengagement of mature spermatids

and removal of excess germ cell cytoplasm during spermiation,

as well as the recycling of junctional molecules at both locations

(Young et al., 2009; Du et al., 2013; Vogl et al., 2013, 2014; Lyon

et al., 2015).

The uniqueness of these specialized organelles, which support

Sertoli–germ cell interactions and transport within the seminif-

erous epithelium, has been clearly observed morphologically

over the past 50 years. However, it is the amalgamation of

molecular and biochemical data with histology through

immunolocalization (Fig. 3) and other imaging technologies that

is now providing new explanations for the complex physiology

of the Sertoli cell, which is required for the maintenance of con-

tinuous sperm production throughout life in the adult male

(Vogl et al., 2013, 2014; Xiao et al., 2014a; Hess & Vogl, 2015;

Lyon et al., 2015).

MOLECULAR BIOLOGY ANDMECHANISMS
The original notion of the Sertoli cell as a ‘nurse cell’ was a

direct result of its morphological relationships with the develop-

ing germ cells. While the morphology has been elegantly

reported, even after 150 years of research with new and better

technological tools the Sertoli cell has retained many of its

molecular secrets. The ability to independently maintain pri-

mary Sertoli cells from rodents in relatively pure cell culture led

to the first molecular studies in the 1970s and 1980s (Dorrington

& Armstrong, 1975; Steinberger, 1975). This approach and the

availability of specific antibodies and improvements in micro-

scopy have revealed several gene products that are unique to the

Sertoli cell.

Some of the first known products of Sertoli cells included

metal transport proteins such as transferrin and ceruloplasmin

(Skinner & Griswold, 1980; Skinner & Griswold, 1982; Skinner &

Griswold, 1983). It was proposed that these products represented

the true ‘nurse cell’ function (Fig. 5) by providing mechanisms

to transport micronutrients across the blood–testis barrier to

support germ cell development (Sylvester & Griswold, 1994). A

model was proposed where Sertoli cells at the basal surface can

take up iron bound to serum transferrin, transfer it to a newly

synthesized transferrin molecule and secrete it on the apical side

of the blood–testis barrier to be used by the developing germ

cells. This model provided a mechanism for moving iron (Fe+3)

across the blood–testis barrier for use primarily in meiotic and

mitotic cell divisions in spermatogonia and spermatocytes and

mitochondriogenesis in spermatids. Iron in this form is required

for many cellular functions but because of its very low solubility

it must be transported bound to specific transport proteins such

as transferrin. Recently, with the current knowledge about addi-

tional components of the iron transport pathway and the avail-

ability of antibodies this model has been expanded

(Leichtmann-Bardoogo et al., 2012). The localization and regula-

tion of a number of proteins involved in iron transport, storage,

and export were examined in mouse testes and it was deter-

mined that there is an autonomous internal iron cycle within the

seminiferous tubules. The cycle consists of primary spermato-

cytes loading with iron from the Sertoli cells, maintaining those

iron stores to support mitosis, meiosis, and mitochondriogenesis

through the elongated spermatid stage and then returning the

bulk of the iron to the Sertoli cells in the ingested residual bod-

ies. The Sertoli cells then recycle the ingested iron back to the

primary spermatocytes. In this model, the Sertoli cells function

as ‘nurse cells’ by providing the iron required for germ cell

development but also remove and recycle the potential toxic

accumulation of iron in the residual bodies. The ‘nurse cell’

function in this case is equivalent to emptying the bedpans!

Figure 6 Electron microscopy showing the thin arm of a Sertoli cell (light

green area) containing the ectoplasmic specialization (Eps) and Sertoli cell

cytoplasm (Sc) adjacent to the germ cell cytoplasm showing the manchette

microtubules of spermatid 2 and the acrosome (Ac) that covers the nucleus

(N) of spermatid 1.
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There are likely several such mechanisms that are part of the

nurse function(s) of Sertoli cells and they have been referred to

as the ‘recycling and waste management’ functions (Yan et al.,

2008; Leichtmann-Bardoogo et al., 2012; Young et al., 2012; Vogl

et al., 2014; Yan, 2015).

The products of Sertoli cells can inhibit immune reactions

(Dufour et al., 2005; Doyle et al., 2012) and provide structural

features (Russell et al., 1983; Russell, 1993a) under a broad clas-

sification of ‘bioprotective and structural’ functions. Adjacent

Sertoli cells synthesize the components of the tight junction

complexes (Figs 3 & 5) and contribute to the basement mem-

brane and participate in the formation of desmosomes, gap

junctions and some unique forms of junctions with germ cells.

The nature of spermatogenesis results in the production of enor-

mous numbers of gametes and therefore these structural ele-

ments must be extremely dynamic and involve the

spatiotemporal expression of many genes.

Sertoli cells also play key roles in signaling in the testis by serv-

ing as the targets for FSH and testosterone and by transducing

those endocrine signals and other cellular cues into paracrine

regulation of germ cells (Griswold, 1993a; Johnston et al., 2001).

Again, both the response of gene expression to FSH and testos-

terone and the expression of growth factors or other signaling

molecular vary with testis development and with the stage of the

cycle of the seminiferous epithelium revealing the requirement

for a complex and carefully controlled gene network. An example

of paracrine signaling can be found in the initiation of spermato-

genesis in the mouse testis. Shortly after birth the A undifferenti-

ated spermatogonia undergo the transition to A1 differentiating

spermatogonia. This transition results in a carefully timed com-

mitment of those cells to meiosis and is absolutely dependent

on retinoic acid synthesized by the Sertoli cells. In the mouse

this transition occurs in patches along the tubule that lead to

asynchronous entry into meiosis and the spermatogenic wave

(Hogarth & Griswold, 2010; Snyder et al., 2010).

Gene expression that results in the formation of the testis in

the embryo occurs within the Sertoli cells. Genes encoding tran-

scription factors such as Sry and Sox9 expressed in the Sertoli

cells alter the transcriptome such that germ cells are enclosed in

seminiferous tubules resulting in the formation of the testis (for

a review see DiNapoli & Capel, 2008; Svingen & Koopman, 2013).

In addition, Cyp26B1 expressed in Sertoli cells breaks down any

retinoic acid and prevents the germ cells from entering the path-

way to meiosis (Svingen & Koopman, 2013). Recently it has been

shown that loss of the DMRT1 transcription factor in mouse Ser-

toli cells, even in adults, activates another transcription factor,

Foxl2, and reprograms Sertoli cells into granulosa cells. These

studies have shown that Dmrt1 in Sertoli cells is essential for

sustained mammalian testis determination (Matson et al., 2011).

So, a dynamic transcriptome with precise spatiotemporal

expression of genes in the Sertoli cells begins early in the

embryo, has a unique program with the onset of spermatogene-

sis and then varies with the cycle of the seminiferous epithelium

throughout the reproductive lifetime of the organism.

The production of spermatozoa by in vitro differentiation of

germ cells has been reported for several species. If these reports

are accepted at face value it means that the male germ cells have

an autonomous program leading to sperm formation (de Winter

et al., 1993; Kerkis et al., 2007; Aflatoonian et al., 2009; Sato

et al., 2011b). However, even the most successful of the

protocols in these reports are extremely inefficient at sperm pro-

duction when compared with spermatogenesis in the testis. In

1993 and 1994, it was suggested in two separate reviews that Ser-

toli cells might be primarily ‘permissive’ in nature (Russell &

Griswold, 1993a; Sharpe, 1994). This view would suggest that

Sertoli cells provide the environment, the signaling and the

structure to allow the efficient autonomous differentiation of

male germ cells into spermatozoa.

Recently the use of the RiboTag mouse that allows the genetic

tagging of polysomes in Sertoli cells in vivo has resulted in a rela-

tively comprehensive description of gene expression in the post-

natal Sertoli cells (Sanz et al., 2013; De Gendt et al., 2014; Evans

et al., 2014). These approaches have resulted in lists of genes

that are overexpressed in Sertoli cells relative to the other cell

types in the testis. Results from one study showed that the genes

most overexpressed in postnatal and adult Sertoli cells involved

glutathione metabolism, cytochrome P450 enzymes, drug meta-

bolism pathways, peptidase, and enzyme inhibitor pathways (De

Gendt et al., 2014). Expression of these types of genes is consis-

tent with a role in ‘recycling and waste management’. Informa-

tion on which genes are expressed in Sertoli cells can lead to a

couple of outcomes. If the product of the gene is a protein with a

known function then the role of that protein in the function of

Sertoli cells may become apparent. However, it is often the case

that the gene product has an unknown function or the known

function is not easily reconciled with the presumed role of Ser-

toli cells in spermatogenesis. Many investigators have attempted

to list the various functions of Sertoli cells and generally these

lists imply that Sertoli cells participate in nearly all aspects of

spermatogenesis (Griswold, 1988, 1995; Griswold et al., 1988;

Sharpe, 1994). In addition, the many roles of the Sertoli cells vary

during development and across the cycle of the seminiferous

epithelium in the adult and require active and well-controlled

transcriptional programs. Very few highly differentiated cell

types have a lifetime requirement for this type of plasticity in

gene expression.

SERTOLI CELL AND THE SPERMATOGONIAL STEM CELL
NICHE

The spermatogonial stem cell niche

Adult stem cells are essential for the maintenance, repair and

regeneration of many organs, and proper regulation of their fate

is therefore critical to maintain tissue homeostasis. Accumulat-

ing evidence suggests that stem cell self-renewal and differentia-

tion depend on specialized microenvironments called niches

(Spradling et al., 2001; Scadden, 2006) and that in turn stem cells

influence their environment (Baraniak & McDevitt, 2010; Mosher

et al., 2012; Sowa et al., 2012). In the mammalian testis, sper-

matogonial stem cells (SSCs) reside on the basement membrane

of the seminiferous tubules and are in intimate contact with the

Sertoli cells. The SSC niche is made of a complex interplay of

growth factors provided by Sertoli and interstitial cells, the base-

ment membrane and stimuli from the vascular network (Chiar-

ini-Garcia et al., 2001; Chiarini-Garcia et al., 2003; Kanatsu-

Shinohara et al., 2007; Oatley & Brinster, 2012). Because of its

physical association with germ cells, the Sertoli cell is arguably

the most important contributor of the niche, by providing para-

crine and juxtacrine signals and secreting components of the

basement membrane. In addition, experimental increase in the
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number of Sertoli cells leads to additional niches that can be col-

onized by SSCs after transplantation (Oatley et al., 2011). It is

also evident that the niche must provide different sets of signals

to the SSCs depending on the timing of testis development. For

example, in the neonatal testis active SSC self-renewal takes

place to establish the stem cell pool, and studies have demon-

strated that neonatal niches are more efficient than adult niches

to regenerate spermatogenesis from transplanted SSCs (Shino-

hara et al., 2001). In contrast, SSC self-renewal in the adult may

only occur during certain stages of the seminiferous cycle (John-

ston et al., 2011; Grasso et al., 2012).

Sertoli cell factors controlling SSC maintenance and self-

renewal

A number of soluble factors produced by Sertoli cells have

been recently discovered that are critical for maintenance of

pro-spermatogonia in the fetus and self-renewal of SSCs after

birth. The most extensively studied niche factor is glial cell line-

derived neurotrophic factor (GDNF). Mutant mice with GDNF

haploinsufficency have severe fertility defects and disrupted

spermatogenesis (Meng et al., 2000). Similarly, ablation of GDNF

and its receptors Ret and Gfra1 at the surface of SSCs result in

loss of the stem cells and their progeny (Naughton et al., 2006).

GDNF is used by SSCs throughout life; however, as its produc-

tion decreases with age SSC numbers decline, which illustrates

the fact that the stem cell pool is dependent upon GDNF for its

maintenance (Ryu et al., 2006). Conversely, ubiquitous overex-

pression of GDNF in transgenic mice leads to overproduction of

undifferentiated spermatogonia and sharp decrease in more dif-

ferentiated germ cells (Meng et al., 2000). In vitro studies also

demonstrated that GDNF is critical for SSC maintenance and

self-renewal in short- and long-term cultures (Nagano et al.,

2003; Kubota et al., 2004; Chen et al., 2005).

During mouse development, low levels of GDNF are already

detectable in the bipotential gonad at embryonic day 11 (Bever-

dam & Koopman, 2006) and its expression increases steadily to

reach a maximum at post-natal day 3 when the SSC population

starts to expand (Tadokoro et al., 2002; Shima et al., 2004; Miles

et al., 2012). In older animals, the levels of GDNF expression vary

between the stages of the seminiferous epithelial cycle, but dif-

ferences between species have been observed (Sato et al., 2011a;

Caires et al., 2012a; Grasso et al., 2012). In the rat, the highest

levels of GDNF mRNA was observed at stages XII to III, when

undifferentiated spermatogonia proliferate (Johnston et al.,

2011), and lowest at stages VII and VIII when most cells are qui-

escent and the majority of Aaligned spermatogonia transition to

the differentiating A1-A4 cells. These observations indicate that

GDNF levels are cyclic, and that its dosage is crucial for the regu-

lation of perinatal germ cell fate and stage-specific proliferation

of undifferentiated spermatogonia. Although the mechanisms

responsible for this cyclic expression are not understood, it is

evident that GDNF production must be modulated by positive or

negative stimuli. For example, follicle-stimulating hormone

(FSH) is a major positive regulator of GDNF expression by Sertoli

cells in vivo and in vitro (Tadokoro et al., 2002). GDNF expres-

sion by cultured Sertoli cells is also stimulated by FGF2, TNFa,
and IL-1b (Simon et al., 2007). Mechanisms that down-regulate

the production of GDNF by Sertoli cells also exist. Such a role is

fulfilled by NOTCH signaling as constitutive activation of this

pathway in Sertoli cells results in sharp downregulation of

GDNF, a complete loss of germ cells around birth and a Sertoli

cell-only phenotype (Garcia et al., 2013). Conversely, ablation of

RBPJ, a downstream effector of the NOTCH pathway, increases

GDNF expression and results in a significant increase in SSCs

and overall germ cell numbers (hyperplasia) (Garcia et al., 2014).

Because the NOTCH ligand JAG1 is highly expressed in undiffer-

entiated spermatogonia and drives the expression of down-

stream targets of NOTCH signaling in Sertoli cells, it is assumed

that germ cells use JAG1 to activate the NOTCH pathway in Ser-

toli cells, therefore downregulating GDNF and controlling their

own numbers (Fig. 7). This mechanism would ensure proper

gem cell homeostasis and sperm output, and is in accord with

the observations of Johnston and colleagues who suggested that

spermatogenic cell density seem to limit GDNF production by

Sertoli cells (Tadokoro et al., 2002; Ryu et al., 2006; Johnston

et al., 2011).

While GDNF is certainly a major component of the stem cell

niche, in vitro culture experiments demonstrated that it is not

the only factor needed for maintenance and long-term renewal

of SSCs. Depending on the genetic background of the mice,

fibroblast growth factor (FGF2) and epidermal growth factor

(EGF) in addition to GDNF are critical for long-term support

(Van Dissel-Emiliani et al., 1996; Kubota & Brinster, 2008;

Kubota et al., 2004). Production of FGF2 by Sertoli cells has been

previously demonstrated and is stimulated by FSH (Smith et al.,

1989; Mullaney & Skinner, 1992). FGF2 promotes self-renewal

independently of GDNF, through activation of the transcription

factors ETV5 and BCL6B, but is less efficient (Ishii et al., 2012;

Takashima et al., 2015).

Another Sertoli cell factor that appear to contribute to the

SSCs niche is leukemia inhibitory factor (LIF) (Piquet-Pellorce

et al., 2000). LIF production in Sertoli cells depends on TNFa
and is widely used in cultures of primordial germ cells, prosper-

matogonia and SSCs from several species (Pesce et al., 1993;

Nikolova et al., 1997; Kanatsu-Shinohara et al., 2003; Aponte

et al., 2008). While LIF maintains SSC survival and is useful to

initiate long-term cultures, it is not promoting self-renewal

(Kanatsu-Shinohara et al., 2007). Another niche factor of interest

is platelet-derived growth factor (PDGF). PDGF is specifically

Figure 7 Model depicting the possible role of NOTCH signaling in Sertoli

cells after birth. Previous studies have shown that FGF2 and FSH induce

GDNF expression by Sertoli cells. Recent data suggest NOTCH signaling is a

negative regulator of GDNF, which might balance the effects of FGF2 and

FSH. Overactivation of NOTCH signaling suppresses the expression of

GDNF and leads to sterility, whereas ablation of NOTCH signaling induces

germ cell hyperplasia.
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produced by Sertoli cells and induces the proliferation of pros-

permatogonia after birth (Loveland et al., 1995; Li et al., 1997)

probably in cooperation with estrogen (Thuillier et al., 2010).

Disruption of cross-talks between PDGF and estrogen-triggered

signaling pathways has been suggested to take place upon expo-

sure to xenoestrogens in the environment, which could lead to

alteration of prospermatogonial behavior and preneoplastic

states (Thuillier et al., 2003). Also, because WNT signaling is crit-

ical for stem cell self-renewal in a variety of tissues (Clevers

et al., 2014), this pathway has been recently investigated in the

testis (Golestaneh et al., 2009; Yeh et al., 2011). WNT5A is pro-

duced by Sertoli cells and promotes SSCs survival through a

CTNNB1-independent mechanism that activates JNK (Yeh et al.,

2011), but it does not per se induce self-renewal. Indeed,

CTNNB1 ablation in germ cells leads to spermatogenesis disrup-

tion but not to SSC loss (Kerr et al., 2014; Rivas et al., 2014).

Finally, although vascular endothelial growth factor A (VEGFA)

family members and their receptors are all produced by germ

cells, Sertoli cells, and interstitial cells (Nalbandian et al., 2003;

Lu et al., 2013) only the pro-angiogenic isoform VEGFA164 pro-

motes SSC self-renewal, as determined by the SSC transplanta-

tion assay (Caires et al., 2012b).

Niche factors controlling migration and homing

To remain in the basal part of the seminiferous epithelium,

SSCs need to generate adhesion molecules that attach them to

the basement membrane provided in part by Sertoli cells. The

basement membrane mainly contains laminin, fibronectin and

collagen IV, therefore attachment of SSCs is mediated at least in

part by integrins, mainly ITGA6 and ITGB1 (Shinohara et al.,

1999). However, SSCs must migrate out of the niche to differenti-

ate, and they also move to open niches from the apical to the

basal part of the seminiferous epithelium after germ cell trans-

plantation. It has therefore been proposed that their migration

depends on chemokines or other chemotactic factors. Earlier

work demonstrated that Sertoli cells produce chemokines that

are regulated by the transcription factor ETV5 (Chen et al., 2005)

and that the chemokine CCL9, ligand of the receptor CCR1 at

the surface of undifferentiated spermatogonia, is able to specifi-

cally attract these cells toward Sertoli cells (Simon et al., 2010).

Another chemokine of importance is SDF1 (CXCL12) expressed

in the genital ridges, which is guiding CXCR4-positive primordial

germ cells toward them (Doitsidou et al., 2002; Ara et al., 2003;

Molyneaux et al., 2003). In the postnatal testis SDF-1, expressed

by Sertoli cells, attracts CXCR4-positive germ cells, and this

activity is crucial for proper homing of SSCs after transplantation

(Kanatsu-Shinohara et al., 2012; Yang et al., 2013). SDF-1

expression in Sertoli cells depends on the nuclear co-repressor

Sin3a (Payne et al., 2010). However, no SDF-1 concentration gra-

dient has been demonstrated yet in the seminiferous epithelium.

In addition, because both Sertoli cells and germ cells express

CXCR4 (Johnston et al., 2008; Wright, 2015), additional investi-

gations are needed to fully understand this system.

SERTOLI CELLS AND TESTIS IMMUNE PRIVILEGE
The unique immunoregulatory status of the testis has been

recognized for over two centuries; based initially on the pro-

longed survival of testicular tissue after transplantation into

genetically disparate recipients (reviewed in Kaur et al., 2013).

Sertoli cells play a central role in creation of this unique

immunoregulatory environment where they provide immune

protection to the developing germ cells, which if exposed to the

immune system can invoke a humoral and cellular immune

response. Spermatocytes and spermatids first appear after

immunological self-tolerance has been established and thus

express novel proteins that if detected by the immune system

would result in immunologic attack. This was demonstrated by

the lysis of spermatocytes and spermatids after exposure to sera

collected from rodents that had been previously immunized

with whole semen (O’Rand & Romrell, 1977; Tung & Fritz, 1978).

The immunogenicity of the germ cells is further supported by

autoimmune orchitis studies where an autoimmune reaction

against the germ cells resulted in loss of spermatogenesis and

infertility (Jacobo et al., 2011; Silva et al., 2014).

The blood testis or Sertoli cell barrier

Given that the autoimmunogenic germ cells described in these

studies were spermatocytes and spermatids and located within

the adluminal compartment of the seminiferous epithelium,

historically the lack of an autoimmune response against these

germ cells was attributed to their sequestration behind the

blood–testis barrier (BTB) or Sertoli cell barrier (SCB). Support-

ing this idea, the BTB/SCB is a physical barrier formed around

puberty and composed of Sertoli cell–Sertoli cell junctions and

the Sertoli cell body, which surrounds the developing germ cells

(Mital et al., 2011). These junctions are tight junctions (zonula

occludens) comprised of occludin, claudins and junctional

adhesion molecules (Mruk & Cheng, 2010). Adherens junctions,

gap junctions, and desmosome-like junctions also contribute to

the function of the BTB/SCB (Cheng et al., 2011). The tight junc-

tions are located along the basal region of the Sertoli cell and

separate the seminiferous epithelium into adluminal and basal

compartments. This barrier separates the advanced germ cells

located in the adluminal compartment from the blood supply,

allowing the Sertoli cells, by expressing various transporters, to

control the passage of molecules across the barrier; creating a

unique microenvironment for germ cell development (Mital

et al., 2011). The barrier also prevents the passage of leukocytes

(immune cells) and molecules, including antibodies from cross-

ing the seminiferous epithelium (Johnson & Setchell, 1968; John-

son, 1972; Dym & Romrell, 1975; Wang et al., 1994; Rival et al.,

2006). The peritubular myoid cells form a semi-permeable bar-

rier that also inhibits the entry of leukocytes into the seminifer-

ous tubules (Dym & Fawcett, 1970; Fawcett et al., 1970).

The primary contributors to the BTB/SCB are occludin, clau-

din-3, -5, and -11, zonula occludens (ZO) 1,2 and 3 and JAM-A

and -B, with occludin and claudin-11 being most important for

barrier integrity. Male mice lacking claudin-11 or occludin were

infertile (Gow et al., 1999; Saitou et al., 2000). However, despite

the persistence of degenerating germ cells, an autoimmune reac-

tion was not observed. In claudin-11 knockout (KO) mice degen-

erating germ cells are present within the lumen of the

seminiferous tubules whereas spermatozoa are absent (Gow

et al., 1999). Testicular autoantibodies were not detected in

serum or within the adluminal compartment of the seminiferous

epithelium and CD4 + T cell infiltrate was not detected within

the testis. In mice treated with a mutant occludin peptide, the

integrity of the BTB/SCB is disrupted and permeable to inulin,

resulting in germ cell loss (Wong et al., 2007). Nevertheless, anti-

sperm antibodies were not detected in serum.
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Claudin-5 KO mice all died within 10 days of birth because of

a defect in blood–brain barrier function (Nitta et al., 2003). Gene

deletion of transcription factor ets variant 5 (ETV5) resulted in

decreased claudin-5 expression in the testis and disruption of

the BTB/SCB suggesting a role for claudin-5 in BTB/SCB integ-

rity, although this has not been tested directly (Morrow et al.,

2009). Claudin-3 was localized to spermatocytes and newly

forming tight junctions in Sertoli cells (Smith & Braun, 2012;

Chihara et al., 2013). Fifty percent reduction in claudin-3 mRNA

expression after claudin-3 siRNA injection into testes of mice did

not alter BTB/SCB integrity (Chihara et al., 2013) and instead

delayed spermatocyte migration across barrier. Consistently,

claudin-3 KO mice were fertile and had an intact barrier (Chak-

raborty et al., 2014).

JAMs are transmembrane proteins important for tight junction

formation and cell adhesion. Deletion of JAM-A resulted in sub-

fertility because of a defect in spermatozoa motility (Shao et al.,

2008), whereas male and female mice with JAM-B gene disrup-

tion were fertile (Sakaguchi et al., 2006). Both JAM-A and –B KO

mice appeared to have normal testicular morphology, however,

the integrity of the BTB was not directly tested. ZOs are adaptor

proteins that anchor claudins and occludin to the actin

cytoskeleton. Knock-out of ZO-3 had no apparent phenotype

(Xu et al., 2009), whereas knock outs of ZO-1 and -2 were embry-

onic lethal (Xu et al., 2009). Rescue of ZO-2 KO embryos resulted

in reduced male fertility because of germ cell loss and increased

permeability of the BTB to a lanthanum tracer (Xu et al., 2009).

However, the effect on immune function is not known, as the

immunological function was not examined in these mice.

Additional support that the BTB/SCB is involved in immuno-

logical protection of the advanced germ cells has been provided

by SCARKO (Sertoli Cell Androgen Receptor Knock Out) mice,

which have Sertoli cell-specific deletion of the androgen recep-

tor (Meng et al., 2005; Meng et al., 2011). These mice have

increased permeability of the BTB/SCB and evidence of an

autoimmune response (Meng et al., 2005; Meng et al., 2011).

Thirty minutes after injection of these mice with a biotin tracer,

biotin was detected within the adluminal compartment of the

seminiferous tubules. In addition, germ cell autoantibodies that

recognize advanced germ cells (round and elongated sper-

matids) were present in the serum. An increase in the number of

macrophages, neutrophils, and eosinophils within the interstitial

space but not within the seminiferous tubules was also observed.

SCARKO mice have decreased expression of claudin-3, which

was originally attributed to these observations. However, the

more recent claudin-3 KO studies did not support this conclu-

sion and suggested that androgens in Sertoli cells are performing

other additional functions related to immune regulation.

Testis immune privilege is more that the BTB/SCB

While regulating access of the immune system to germ cell

autoantigens is no doubt an important aspect in controlling the

immune response, immunological protection of the developing

germ cells is more complex and involves Sertoli cell modulation

of the immune response. As a result, the whole testis is immune

privileged. Evidence that the whole testis is immune privileged is

provided by several studies. For instance, when foreign tissue

such as allogeneic or xenogeneic pancreatic islets, skin frag-

ments or parathyroid grafts are transplanted into the testis, they

enjoy prolonged graft survival when compared with their

survival after transplantation to nonimmune privileged sites

even though the cells transplanted in the testis are located in the

interstitial space, outside of the BTB/SCB (Barker & Billingham,

1977; Setchell, 1990; Selawry, 1994; Mital et al., 2009).

Moreover, successful allogeneic spermatogonial stem cell

transplantation, resulting in germ cell colonization of the basal

compartment of the seminiferous tubules, has been performed

in a wide range of species including birds, fish, goats, pigs, cattle,

sheep, rodents, dogs, and cats without immunosuppression

(reviewed in Kaur et al., 2013). This is consistent with an earlier

study, which demonstrated that spermatogonia and prelep-

totene spermatocytes, located within the basal compartment of

the seminiferous epithelium, were outside of the BTB/SCB,

expressed auto-immunogenic antigens (Yule et al., 1988) and

yet, an immune response was normally not generated against

these germ cells.

In humans, fine-needle biopsies (causing local injury to the

seminiferous epithelium) are performed routinely and normally

do not lead to autoimmune orchitis (Mallidis & Baker, 1994).

Furthermore, in seasonal breeders, during the nonbreeding cycle

the BTB/SCB is disrupted. Nevertheless, meiotic spermatocytes

develop normally even in the absence of a complete, imperme-

able BTB/SCB (Pelletier, 1986). Therefore, other mechanisms in

addition to the BTB/SCB are required to create the immunologi-

cally privileged environment of the testis.

One possible downside to testis immune privilege is the

potential for an increase in infections or tumors. The testis is a

major site for relapse of acute lymphoblastic leukemia (ALL)

(Hedger, 2015). However, overall the testis is no more suscepti-

ble to testicular tumors when compared with other tissues and

infections are rare (Hedger, 2015). This has been attributed to

activation of innate immunity, which could theoretically prevent

infections and tumors without activating the adaptive immune

response (Hedger, 2015).

Evidence for Sertoli cells in testis immune regulation

Evidence that Sertoli cells manipulate the immune response

comes from transplantation studies where Sertoli cells not only

survive when transplanted across immunological barriers as

allografts or xenografts but also provide immune protection for

co-grafted cells such as pancreatic islets to treat diabetes, adre-

nal chromaffin cells for neurodegenerative diseases, hepato-

cytes, and skin grafts (Kaur et al. 2015.). These unique

immunomodulatory properties suggest that Sertoli cells are not

only important for the overall protection and development of

germ cells, they have therapeutic potential beyond the testis

where they can protect co-grafted cells and even be engineered

to express clinically relevant proteins like insulin to treat dia-

betes or neurotrophin-3 to treat spinal cord injury (Pelletier,

1986; Halley et al., 2010; Kaur et al., 2014b, 2015). Sertoli cells

create this immune privileged environment by expressing

immunoregulatory factors that actively suppress innate,

humoral and cell-mediated immune responses while at the same

time inducing regulatory immune cells (regulatory T cells and

M2 macrophages). Sertoli cells express apoptosis inhibitors

(SERPINA3N, SERPINB9), complement inhibitors (serping1,

DAF or CD55, MCP or CD46, clusterin), immunomodulatory fac-

tors (IDO, galectin-1), anti-inflammatory cytokines (TGFB1), and

chemokines (CCL27) that act together to modify the immune

response and induce tolerance to protect the germ cells (Wang
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et al., 1994; Guazzone et al., 2009; Meinhardt & Hedger, 2011;

Doyle et al., 2012).

Interestingly, the timing for when immune privilege first

develops is not clear. The majority of Sertoli cell co-transplanta-

tion studies were performed using Sertoli cells isolated from

pubertal or adult testes, indicating, as expected, that these Ser-

toli cells had immune protective abilities (Mital et al., 2010). The

age of these Sertoli cells corresponded with the development of

the autoimmunogenic germ cells. However, neonatal porcine

Sertoli cells also survive when transplanted as xenografts

(Dufour et al., 2003b) and testes transplanted from fetal and

early postnatal (up to 15 days) rats survived better than adult

testis transplants (Statter et al., 1989).

Overall Sertoli cells protect the developing auto-antigenic

germ cells by forming the BTB/SCB (Fig. 3), which limits access

by the immune system to the advanced germ cells, whereas at

the same time modulating the immune response by secreting

immunoregulatory factors that modify the immune response

and induce regulatory immune cells to create a local tolerogenic

environment and along with the peritubular myoid cells restrict-

ing the immune cells to the interstitial space. It is amazing that

150 years ago, when Enrico Sertoli first described Sertoli cells, he

was able to intuitively suggest, based on Sertoli cell morphology,

the importance of Sertoli cells in the protection of the germ cells.

COMPARATIVE SERTOLI CELL BIOLOGY
In metazoans, spermatogenesis relies on the somatic cells

environment for its completion. Therefore, in order to guaran-

tee fertility during the animal reproductive lifetime, the somatic

cells named Sertoli cells in vertebrates are crucial for facilitat-

ing germ cells survival and development in such a manner that

spermatozoa is usually produced in very high numbers. How-

ever, Sertoli cell structure and function in anamniotes (fish and

amphibians), which present a cystic type arrangement of game-

togenesis (Schulz et al., 2010), shows several important differ-

ences when compared with amniotes (mammals, birds, and

reptiles) (Fig 8). These particularities may provide new insights

into Sertoli cell physiology and will be addressed in this

section.

A very important particularity is that, different from amniotes,

Sertoli cells remain mitotically active in fish and amphibians

after they become sexually mature and two modes of prolifera-

tion that could overlap each other are observed in fish (Franc�a
et al., 2015) (Suppl. Fig. 3). In the first mode, Sertoli cell progeni-

tors – that are regulated by FSH, thyroid hormone, estrogens,

and insulin-like growth factor – proliferate to provide space for

new niches that will be occupied by SSCs or single spermatogo-

nia, forming therefore new spermatogenic cysts (Morais et al.,

2013; Franc�a et al., 2015). In this instance, similar to rodents

(Dovere et al., 2013), paracrine factors (i.e., GDNF) produced by

Sertoli cells in fish may stimulate SSC self-renewal divisions or

attract SSCs from other areas (Lacerda et al., 2013; Nakajima

et al., 2014). However, in contrast to rodents (Cooke et al., 2005),

thyroid hormones (thriiodothyronine-T3) in zebrafish increase

the mitotic activity of Sertoli cells via Igf signaling system (igf3

gene). This is particularly true for Sertoli cells not yet associated

with germ cells or in contact with type A spermatogonia. There-

fore, Igf also stimulates the proliferation of undifferentiated

spermatogonia in a sex steroid independent manner (Morais

et al., 2013).

The second mode of Sertoli cell proliferation is under the regu-

lation of FSH, androgens, and progestins. In this mode, Sertoli

cells within the existing cysts divide to accommodate the

expanding germ cell clones, according to the respective repro-

ductive strategy and distribution of spermatogonial cells in the

testis parenchyma of each species (Billard & Breton, 1978;

Almeida et al., 2008; Franc�a et al., 2015). Although solid scien-

tific evidence is still lacking for this mode, the existence of a Ser-

toli progenitor or stem cell population seems quite plausible and

deserves careful investigation based upon the following observa-

tions: the long-term capacity of Sertoli cell division in successive

reproductive cycles, the fully functional sex reversal in adults

(Shibata & Hamaguchi, 1988; Kobayashi et al., 2009), and the

natural sexual plasticity observed in sequentially hermaphroditic

fish species (Kobayashi & Nagahama, 2009).

It seems that in anamniotes, Sertoli cells enveloping a germ

cell cyst are only terminally differentiated after meiosis is com-

plete, because this functional status correlates with the forma-

tion of tight junctions between Sertoli cells (Leal et al., 2009;

Franc�a et al., 2015). Therefore, considering their proliferating

activity and the establishment of tight junctions, Sertoli cells

seem to behave similarly throughout vertebrates. In this regard,

evaluation of an individual spermatogenic cyst in anamniotes

will reveal that the number of Sertoli cells increases steadily dur-

ing the mitotic phase, stabilizing upon completion of meiosis/

start of spermiogenesis (Matta et al., 2002; Schulz et al., 2005;

Leal et al., 2009).

Compared with mammals, the number of spermatogonial

mitotic cycles in anamniotes is usually quite high, whereas

much lower numbers of apoptotic germ cells (30–40% loss from

the theoretically expected number) are observed in spermato-

genic cysts (Vilela et al., 2003; Leal et al., 2009; Franc�a et al.,

2015). Therefore, hundreds of more advanced germ cells (mei-

otic and post meiotic) are usually present in a cyst in association

with low number of Sertoli cells. It means that, despite having

little or no direct contact (junctions) with germ cells, Sertoli cells

efficiency in lower vertebrate is quite high. Although this issue is

very complex and deserves further evolutionary investigation,

reproductive efficiency is clearly related to the number of game-

tes required for a particular mode of reproduction. It is at great

cost to the organism that gametes are produced so it is likely that

evolution carefully monitors the efficiency so that sufficient

numbers of gametes are produced to ensure the continuation of

the species while increasing the efficiency of fertilization and

survival of the offspring. In particular, the number of spermatids

per Sertoli cell, which is considered species-specific, varies

greatly during vertebrate evolution and decreases strikingly from

more than one-hundred in fish to less than ten in most mam-

malian species already investigated, reaching about four in

humans (Assis et al., 2015; Franc�a et al., 2015) (Figure S4). This

quite illustrative figure allows us to speculate that perhaps

humans will not produce sperm in the future. As anamniote Ser-

toli cells present very high support capacity for germ cells, a

careful and comprehensive investigation on these somatic cells

may provide important clues regarding their regulatory mecha-

nisms during evolution. An important aspect that deserves con-

sideration is the fact that in the vast majority of fish species

spermatozoa has no acrosome, requiring therefore a very high

number of gametes for reproduction through external

fertilization.
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In fish both Sertoli and Leydig cells express receptors for FSH

and LH that directly stimulate steroidogenesis. It is worth men-

tioning that sharks do not have steroidogenic Leydig cells in the

interstitial compartment. Therefore, unlike higher vertebrates, in

addition to regulating Sertoli cells activities and proliferation

(Schulz et al., 2012), Fsh in fish is also a potent steroidogenic

hormone (Prat et al., 1996; Campbell et al., 2003; Franc�a et al.,

2015) and is associated with spermatogonial proliferation and

differentiation (Skaar et al., 2011; Assis et al., 2015; Melo et al.,

2015; N�obrega et al., 2015).

New evidence from electron microscopy studies (Franc�a et al.,

2015) has shown that Sertoli cells seem to be in contact with dif-

ferent type of germ cells clones in different phases of cystic sper-

matogenesis (i.e., spermatogonial and spermiogenic), an

important aspect that will open new possibilities for investigat-

ing germ–Sertoli cells signaling pathways. Particularly the mech-

anisms related to the structural and functional aspects of

Sertoli–germ cell interactions that may contribute to the strik-

ingly anamniote Sertoli cell efficiency need to be investigated.

Comprehensive studies investigating the biology of SSCs and

their niche have been pivotal in this scenario (N�obrega et al.,

2010). As acting mainly on Sertoli cells, FSH plays a pivotal role

in fish testis function and gametogenesis through several differ-

ent growth factors (i.e., AMH, androgens, progestins, thyroid

hormones, Igf3) that regulate SSCs renewal and differentiation

(N�obrega et al., 2010, 2015; Skaar et al., 2011; Chen et al., 2013;

Morais et al., 2013; Assis et al., 2015; Franc�a et al., 2015; Melo

et al., 2015). Through a nuclear estrogen receptor, eel Sertoli

cells also regulate SSC renewal via the expression of platelet-

derived endothelial cell growth factor (Pdecgf) that is considered

a SSC renewal factor (Miura et al., 2003). Moreover, under the

influence of progestin, trypsin expression (Miura et al., 2009),

and taurine biosynthesis (Higuchi et al., 2012) were observed in

eel Sertoli cells, leading to germ cells expression of a solute car-

rier gene (slc6a6) and their subsequent entry into meiosis (Higu-

chi et al., 2013).

In higher vertebrates, the derivatives of mesonephric tissue

form the efferent ducts and sperm storage tissues. Considering

that in most fish species spermatozoa are stored in the tubular

lumen and that after the spawning season the residual sperma-

tozoa are very efficiently phagocytized by SCs, fish represent an

interesting model for investigating both the ‘recycling and waste

Figure 8 Schematic representation of the main differences between Sertoli cells (SC in the legend) in cystic and non-cystic spermatogenesis. Adiff, type A

differentiated spermatogonia; Aund, type A undifferentiated spermatogonia; B, type B spermatogonia; BL, basal lamina; BV, blood vessel; EST, elongated

spermatid; LE or LC, Leydig cells; MY, peritubular myoid cells; RST, round spermatid; SC, spermatocytes; SE, Sertoli cell; SG, spermatogonia. Modified from

previous publications with permission of the Copyright © holder of Sertoli Cell Biology, 2nd edition, Elsevier Academic Press (Schulz et al., 2010; Franc�a
et al., 2015).
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management’ functions of Sertoli cells and spermatogonial

kinetics. Finally, based on several important aspects mentioned

in this section, we hope that we have convincingly demonstrated

that Sertoli cells in lower vertebrates are highly dynamic and

plastic cells. In contrast to mammals, Sertoli cells in fish are able

to provide an adequate environment for spermatogenesis pro-

gression and sperm formation after xenogenic germ cell trans-

plantation from phylogenetically distant species (Lacerda et al.,

2013; Lacerda et al., 2014) and this is certainly another very

important illustration of the amazing plasticity of anamniote

Sertoli cells.
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SUPPORTING INFORMATION
Additional Supporting Information may be found in the online version of

this article:

Table S1. Sertoli Cell Books and Biographies of Enrico Sertoli.

Figure S1. Key Morphological Features of Sertoli Cell are listed with rep-

resentative examples illustrated.

Figure S2. Electron microscopy of the Sertoli cell nucleus (N) from a

human testis showing a large nucleolus (Nu) and deep indentation (In) of

the nuclear membrane (Nm).

Figure S3. Schematic representation of Sertoli cell (SC) proliferation in

relation to endocrine and paracrine regulation of fish spermatogenesis.

Figure S4. Number of spermatids per Sertoli cell (SC), based on the avail-

able literature, for different vertebrate groups.
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