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The impacts of elevated atmospheric CO2 (eCO2) and alterations in nutrient availability

on the carbon (C) storage capacity and resilience of the Amazon forest remain highly

uncertain. Carbon dynamics are controlled by multiple eco-physiological processes

responding to environmental change, but we lack solid experimental evidence,

hampering theory development and thus representation in ecosystem models. Here,

we present two ecosystem-scale manipulation experiments, to be carried out in the

Amazon, that examine tropical ecosystem responses to eCO2 and alterations in nutrient

availability and thus will elucidate the representation of crucial ecological processes by

ecosystemmodels. We highlight current gaps in our understanding of tropical ecosystem

responses to projected global changes in light of the eco-physiological assumptions

considered by current ecosystem models. We conclude that a more detailed process-

based representation of the spatial (e.g., soil type; plant functional type) and temporal

(seasonal and inter-annual) variability of tropical forests is needed to enhance model

predictions of ecosystem responses to projected global environmental change.

Keywords: Amazon, carbon allocation, elevated CO2, free-air CO2 enrichment (FACE), nutrient addition, tropical

forest

INTRODUCTION

Tropical forests account for approximately one fourth of the total global forest carbon (C) stock
(Phillips et al., 2009; Pan et al., 2011; Carvalhais et al., 2014). The Amazon basin represents
the largest continuous region of tropical forests, storing about 150–200 Pg C (Feldpausch et al.,
2012) and accounting for 14% of C fixed by photosynthesis in the terrestrial biosphere (Zhao
and Running, 2010). A decrease or cessation of the Amazon forest C sink could create strong
positive feedbacks on global climate change. It is therefore of paramount importance to enhance the
mechanistic understanding of potential feedbacks between tropical C storage and projected global
environmental change (Zhou et al., 2013; Zuidema et al., 2013).
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Amazon forests appear vulnerable to increasing moisture
stress, with the potential for large C losses to exert feedbacks
on climate change (Phillips et al., 2009). Global circulation
models project an increase of droughts affecting the Amazon
region (Malhi et al., 2008) due to increasing frequency of climate
anomalies associated to increasing sea surface temperatures
(Lewis et al., 2011), which could lead to loss of Amazon
forest further accelerating climate change (Rammig et al.,
2010). Efforts to quantify the response of aboveground carbon
storage derived from forest inventory plots concluded that such
events have the potential to reverse a multi-decadal biomass
C sink across Amazonia (Phillips et al., 2009). However, to
date predicted responses of the Amazon forest to projected
global climate changes (mainly precipitation and temperature)
remain largely speculative due to a lack of direct experimental
evidence (Malhi et al., 2009; Davidson et al., 2012; Cernusak
et al., 2013). As a surrogate, ecosystem models that include
the mechanistic representation of key ecosystem processes, such
as photosynthesis, respiration, growth, and C allocation, have
been used for projections of ecosystem responses to changes in
climate, atmospheric CO2 and nutrient availability (e.g., Goll
et al., 2012; Huntingford et al., 2013; Joetzjer et al., 2014; Smith
et al., 2014; Yang et al., 2014). However, due to differences
in the representation of ecophysiological processes and their
sensitivity to environmental stresses model simulations predict
either dramatic Amazon forest dieback for the twenty first
century due to changes in precipitation patterns (Cox et al., 2008)
and rising temperatures (Cox et al., 2004), or simulate strong
resilience of tropical forests due to a theoretically supposed CO2

fertilization effect on primary productivity (Cox et al., 2013;
Huntingford et al., 2013). As a consequence, climate-driven loss
of tropical forest biomass could potentially be mitigated by CO2

fertilization of forest productivity (Lapola et al., 2009; Rammig
et al., 2010).

Nonetheless, lack of experimental evidence, in particular
for the tropics, hinders the validation of current ecosystem
models in predicting responses to increasing atmospheric CO2

concentrations and alterations in nutrient availability. In turn,
one of the main limitations of state-of-the-art models for
reliably projecting potential changes in the Amazon C pool is
the uncertainty associated with critical underlying ecosystem
processes such as the physiological response of tropical trees
to eCO2 and nutrient limitation (Medlyn et al., 2015; Norby
et al., 2016; Reed et al., 2015). So far, manipulative ecosystem
experiments have predominantly been conducted in temperate
and boreal regions. These experiments have greatly enhanced
our understanding of forest ecosystem responses to eCO2

and increasing nutrient inputs from anthropogenic sources
(e.g., Rastetter and Shaver, 1992; Reich et al., 2014; Norby
et al., 2016). For instance, free-air CO2 enrichment (FACE)
experiments in temperate areas indicate an initial increase in
forest productivity (Norby et al., 2005), which is ultimately
limited by soil nutrient availability (Norby et al., 2010). However,
temperate and boreal regions are predominantly limited by soil
nitrogen (N) availability, whereas lowland tropical forests are
relatively rich in N, but characterized by highly weathered soils
with low soil phosphorus (P) availability (Walker and Syers,

1976; Vitousek and Sanford, 1986; Quesada et al., 2012). Because
of differences between tropical forests and temperate forests
in biological complexity, nutrient cycling, and climate regimes,
we expect differential responses of tropical forest ecosystems to
eCO2 and alterations in nutrient availability.

Ecosystem scale experiments subjecting mature forests to
eCO2 and nutrient addition in the tropics, and in particular
the Amazon forest, are crucial for filling major gaps in our
understanding of expected global change effects (Hickler et al.,
2008; Cernusak et al., 2013; Norby et al., 2016). Two major
endeavors are currently underway in Amazonia; the first free-air
carbon enrichment experiment in a mature tropical old-growth
forest (AmazonFACE; Lapola and Norby, 2014), as well as the
first large-scale factorial nutrient addition experiment (AFEX;
Amazon fertilization experiment). These experiments aim to
assess the effects of eCO2 and alterations in nutrient availability
on biogeochemistry, ecology and resilience of the Amazon forest.
Based on an assumption-centered integrated model-experiment
approach (Medlyn et al., 2015), the goal of this paper is to discuss
the plausibility and uncertainties of three hypotheses related to
potential responses of tropical ecosystem processes to eCO2 and
alterations in nutrient availability: (1) Elevated CO2 will increase

C source activity (i.e., assimilation) and thus could stimulate

C sink activity (i.e., growth) (2) Low nutrient (phosphorus)

availability of tropical soils will limit C sink activity but may

be alleviated by C allocation belowground; (3) Shifts in plant C

allocation will increase C turnover and thus might decrease C

storage in tropical forests. We explore each of these hypotheses
in relation to current model assumptions and observational
evidence (Figure 1).

ELEVATED CO2 WILL INCREASE C
SOURCE ACTIVITY (I.E., ASSIMILATION)
AND THUS COULD STIMULATE C SINK
ACTIVITY (I.E., GROWTH)

Current model formulations assume that tropical forests have
the potential to respond more strongly to eCO2 compared to
temperate and boreal forests, based on the eco-physiological
understanding of photosynthesis that is represented by a scheme
introduced by Farquhar et al. (1980). Therefore most ecosystem
models incorporating the Farquhar scheme (Long, 1991; Drake
et al., 1997; Hickler et al., 2008, 2015; Cernusak et al., 2013)
suggest that eCO2 increases rates of leaf-level photosynthesis
(Lloyd and Farquhar, 1996) based on the following simplified
relationship:

A = min







JL = f (PAR)

Jc = f (ci,T, ∼H2O)

Je = f (T)







where the rate of gross photosynthetic CO2 assimilation (A) is
determined by the rate of carboxylation (Jc), and the potential
rate of electron transport (Je) at a particular irradiance (JL).
Several factorsmay limit the rate of carboxylation; i.e., the relative
partial pressure of CO2 and O2 (ci), the amount of activated
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FIGURE 1 | Simplified conceptual model depicting major pools and

fluxes of carbon in tropical forests. Assumption-based hypotheses to be

targeted by the proposed Amazonian long-term ecosystem experiments are

discussed in the text.

Rubisco enzyme, and the rate of acceptor regeneration (Farquhar
et al., 1980). Due to the influence of ci and JL on the temperature
(T) dependence of A, and the fact that under eCO2 carboxylation
dominates over oxygenation and increases with T until limited
by the maximum rate of Je, we might expect a stronger positive
response of net photosynthesis to eCO2 in warmer environments,
such as tropical forests (Lloyd and Farquhar, 2008).

However, because carbon gain and water loss are regulated
by the rate of leaf stomatal closure, a downregulation of
stomatal conductance due to high vapor pressure deficit has
the potential to substantially reduce the eCO2-induced increase
in leaf-level photosynthesis (Beedlow et al., 2008; Körner,
2009; Holtum and Winter, 2010). Based on the observed
coupling between photosynthesis and stomatal conductance such
effects are included in most ecosystem model formulations and
therefore under eCO2, most models simulate an increase in
water-use efficiency (WUE; De Kauwe et al., 2013) i.e., the
rate of photosynthesis to transpiration. However, studies based
on carbon isotope fractionation in tropical tree rings suggest
that increasing WUE does not necessarily trigger increased tree
growth (Nock et al., 2011) and thus found no stimulation of
tree growth in response to CO2 fertilization (van der Sleen
et al., 2014). This dilemma might result from the fact that
under sub-optimal conditions enhanced “source activity” (i.e.,
assimilation) of leaves in response to eCO2 might not stimulate
increased “sink activity” (i.e., growth) of tropical trees due to

other factors limiting plant growth (Körner, 2003). Highlighting
the interactive effects of instantaneous biogeochemical processes
that have to be considered in global ecosystem models this
illustrates why an eCO2-induced stimulation of photosynthetic
C assimilation might not necessarily result in enhanced C storage
of tropical forests in response to eCO2 (Körner, 2003).

Recent research indicates that during drought trees prioritize
growth by reducing autotrophic respiration that is unrelated to
growth instead of reducing total productivity (Doughty et al.,
2015a). This indicates that projected global changes such as
increasing drought frequency and mean annual temperatures
influence the ratio of photosynthesis to respiration (Ra) and
thus affect plant carbon use-efficiency (CUE) i.e., the rate of
net primary production (NPP) to gross primary production
(GPP; Gifford, 2003; DeLucia et al., 2007). Similarly, in process-
based models the optimum temperature for maximum net
primary production (where NPP = GPP−Ra) depends on the
balance between temperature effects on photosynthesis and
respiration. However, there are still large uncertainties to which
extent these physiological processes can acclimate in response
to projected global changes (Huntingford et al., 2013). Both
photosynthesis and respiration are speculated to be capable
of dynamic thermal acclimation as a long-term temperature
response. For instance, when acclimation is not considered in
ecosystem models this usually leads to widespread forest dieback
compared to when photosynthetic temperature acclimation is
accounted for (Sitch et al., 2008). However, acclimation is
challenging to incorporate in models in a mechanistic way
because different species appear to vary in their acclimation
strategies (Medlyn et al., 2011). Thus, the overall effect of
global changes on tropical forests represents the integration
of simultaneous responses of ecophysiological processes, such
as those discussed above but also on phenology, allocation,
turnover, and decomposition. Ultimately, by integrating this
mechanistic understanding based on empirical evidence from
experimental studies in next generation ecosystemmodels we will
be able to scale-up plot-level measurements to ecosystem-scale
responses under sub-optimal conditions of resource availability.

LOW NUTRIENT (PHOSPHORUS)
AVAILABILITY OF TROPICAL SOILS WILL
LIMIT C-SINK ACTIVITY BUT MAY BE
ALLEVIATED BY C ALLOCATION
BELOWGROUND

Plants need a broad range of nutrients (N, P) and micronutrients
in a certain stoichiometry to maintain NPP, growth and normal
functioning (e.g., Liebig, 1840; Sterner and Elser, 2002; Körner,
2003). Hence, we expect that potential initial increases in
NPP will be limited by low nutrient availability of tropical
soils (Figure 1). In tropical forests N is mainly stored in
biomass, and rapidly recycled from organic matter; and in
addition to N deposition, symbiotic N2-fixing plants appear
at a high abundance (Houlton et al., 2008; Hedin et al.,
2009). Phosphorus inputs in contrast are mainly rock-derived; P
availability decreases with weathering, and with increasing soil
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age it becomes gradually transformed and bound in recalcitrant
complexes (e.g., Walker and Syers, 1976; Vitousek et al., 2010).
Hence, in old and highly weathered Amazonian soils P rather
than N appears to limit plant growth. Moreover, P availability
seems to exert an important control on N cycling (Quesada
et al., 2010; Vitousek et al., 2010), but our understanding of the
nature of P limitations and N:P interactions is still expanding
(Vitousek et al., 2010; Lambers et al., 2015). Ecosystem C-N
models integrating above- and belowground interactions, and
including constraints of plant stoichiometry strongly improved
the representation of eCO2 responses of two temperate FACE
experiments (Zaehle et al., 2014). There is growing recognition
that P-dynamics andN:P interactions, particularly for the tropics,
are poorly represented in ecosystem models (Wang et al., 2010;
Yang et al., 2011; Goll et al., 2012; Powers et al., 2015; Reed
et al., 2015) For example, when N and P availability are included
in global ecosystem models NPP is reduced by up to 25%,
potentially compensating eCO2 effects and turning the terrestrial
biosphere into a net C source by 2100 (Wieder et al., 2015).

Nutrient limitations might restrain plant productivity, and
reduce the proposed C sink strength of Amazonian forests,
as has been shown for other tropical forests (Kaspari et al.,
2008; Wright et al., 2011; Lambers et al., 2015; Powers et al.,
2015). To date, three stand-scale nutrient addition experiments
conducted in high diversity lowland tropical forests, indicate co-
limitations of several nutrients regulating key plant physiological
and ecosystem processes (Mirmanto et al., 1999; Kaspari et al.,
2008; Wright et al., 2011; Pasquini and Santiago, 2012; Alvarez-
Clare et al., 2013). However, even in relatively P-rich soils in
Central America (Cleveland et al., 2011) P additions tend to have
the strongest impacts, increasing decomposition rates (Kaspari
et al., 2008) and stimulating growth of trees in smaller size classes
(Wright et al., 2011; Alvarez-Clare et al., 2013). We therefore
expect soil P to be the key nutrient restraining responses to
eCO2, buffering the proposed C sink strength (Aragão et al., 2009;
Cleveland et al., 2011; Baribault et al., 2012; Quesada et al., 2012).

FACE-experiments conducted in temperate forest ecosystems
showed that under eCO2 an initial increase in NPP by enhanced
photosynthesis was allocated to fine root production and root
exudation to overcome increasing N limitation (Körner et al.,
2005; Iversen et al., 2008; Norby et al., 2010). The low P-
availability in the Amazon, however, rather hints toward a
gradual P-limitation, but similarly as in temperate forests, this
may be alleviated by increasing C allocated belowground into
root production, exudates, and to mycorrhizal or N-fixing
symbionts (Finzi et al., 2007; Houlton et al., 2008; Iversen, 2010).
While increased root biomass might promote C sequestration,
higher labile C inputs into the rhizosphere will provide energy
for microbes and change microbial community composition and
turnover (Deng et al., 2016). Increased root exudation could
stimulate enzyme (phosphatase) production (Nottingham et al.,
2012; Spohn et al., 2013; Stone et al., 2013) and induce changes of
soil pH in the close vicinity of fine roots (Lloyd et al., 2001; Jones
et al., 2009; Lambers et al., 2015), and enhance decomposition of
leaf or root litter or of older soil organic matter (“priming-effect”;
Fontaine et al., 2003; Kuzyakov, 2010). This could enhance P
availability for microbial and plant uptake, but could lead to CO2

losses as autotrophic respiration (Ra), and enhance heterotrophic
soil CO2 efflux (Rhet) due to higher microbial growth and
activity (Fontaine et al., 2004; Blagodatskaya et al., 2010; Kelley
et al., 2011). If this is the case, we predict that increases in
soil respiration will decrease a likely C fertilization effect in
tropical forests. Alternatively, eCO2 could increase leaf longevity
and alter litter quality (e.g., increase C:P and lignin content),
which could reduce decomposition and buffer CO2 losses by
Rhet. Hence, conducting a FACE, as well as a factorial nutrient
addition experiment will increase our mechanistic understanding
of N and P limitation in mature, old growth tropical forests
(Cleveland et al., 2011), and allow improving model-assumptions
to enhance predictions of tropical ecosystem responses to eCO2

and alterations in nutrient availability.

SHIFTS IN PLANT C ALLOCATION WILL
INCREASE C TURNOVER AND THUS
MIGHT DECREASE C STORAGE IN
TROPICAL FORESTS

Due to potentially increased NPP in response to eCO2, and a
subsequent relative investment into belowground compartments
we expect a general shift in plant C allocation (Figure 1).
Nonetheless, the allocation of NPP between plant compartments,
as well as to carbohydrate reserves and export to symbionts is
usually not accounted for in ecosystem models (Fatichi et al.,
2014) or often represented by constant fractions:

dCi

dt
= αNPP −

Ci

τ

where Ci represents a given plant C pool (e.g., leaves, wood, fine
roots), α is a parameter in percentage and τ the turnover rate
of Ci. Such constant allocation schemes perform poorly when
reproducing eCO2 effects (De Kauwe et al., 2014). This is partly
due to the fact that key processes such as carbon allocation to leaf,
root and wood, plant mortality and soil carbon decomposition
fluctuate over time and space (Rowland et al., 2014) and thus this
variability should be represented in ecosystemmodels. Therefore,
allocation schemes based on functional relationships among
biomass fractions that vary with resource availability perform
best in capturing field-based observations (De Kauwe et al.,
2014).

Recent observations indicate that photosynthesis and plant
carbon usage are temporally decoupled allowing C to be
allocated when it is ecological beneficial, rather than when C is
environmentally most available (Doughty et al., 2015b). Hence,
seasonal reductions in wood NPP were found associated with
carbon preferentially allocated to either root or canopy NPP
during the dry season (Doughty et al., 2015b). Due to significant
differences in turnover times of plant tissues (i.e., leaves, wood,
fine roots) this suggests that projected increases in temperature
and dry season length could strongly affect tropical C storage
by shifting C allocation away from wood NPP (Hofhansl et al.,
2015) and toward canopy and root NPP to alleviate drought-
induced resource limitation (Doughty et al., 2014). As a result,
tropical C storage will differ considerably depending on if C
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is stored in long-lived wood or allocated to plant tissue with
reduced lifespan (Körner et al., 2005). In accordance, global
vegetation models diverge considerably between estimates based
on the representation of C allocation and pool turnover patterns.
Nonetheless, despite the fact that residence time of C was
found to dominate the uncertainty in the response of terrestrial
vegetation to eCO2 (Friend et al., 2014), most models predict
increasing C sequestration in both biomass and soils in response
to eCO2 (De Kauwe et al., 2014).

Over the last decades the Amazon C sink has been substantial
(Pan et al., 2011), however, recent observations suggest that the
sink strength is declining due to increasing tree turnover and
mortality rates (Brienen et al., 2015). Therefore, a realistic scenario
in line with long-term inventory data (Phillips et al., 1998, 2008)
seems that global alterations in atmospheric CO2-concentration
and nutrient availability could have generated a more dynamic
tropical forests (Körner, 2004).As a result, accelerated life cycles of
tropical trees (BugmannandBigler, 2011) andassociated increases
in turnover times and decomposition rates have the potential to
adversely affect the Amazonian C sink strength in the long-term
(Brienen et al., 2015).

THE WAY FORWARD:
MODEL-EXPERIMENT INTEGRATION

It is becoming increasingly evident that high diversity tropical
forests, and in particular the Amazon, pose great challenges for
global ecosystem models. Hence, the common use of 1 or 2
plant function types (PFT) with fixed parameterization and thus
a common response to environmental change does not apply
to highly diverse flora. Recent studies indicate that tropical C
storage may be strongly determined by the hyperdominance
(Fauset et al., 2015) and functional composition of tropical tree
communities in association with different life-history strategies
of tropical trees (Fauset et al., 2012). A CO2 induced shift
to shorter average tree life span could favor fast-growing tree
species that invest in low-cost tissue, which could increase the
turnover of C and thus decrease the C storage at the landscape
scale (Phillips et al., 2009; Fauset et al., 2012; Cernusak et al.,
2013). In accordance, simulations of nonrandom species loss
for fast-growing species with low wood density increased C
storage by 10%, whereas the loss of high statured slow-growing
species decreased C stocks by over 30% (Bunker, 2005). This
further highlights that impacts of climate change and eCO2 on
the Amazon forest could be more subtle than projected by a
catastrophic dieback scenario, and already ongoing.

Recent studies evaluating the sensitivity of wood NPP to
seasonal and interannual variations in climate showed that
the growth response of tropical trees is associated to site-
specific differences in drought sensitivity (Hofhansl et al., 2014),
such that consistent with a hypothesized tradeoff between
maximum potential growth rate and hydraulic safety the
strength of the growth seasonality response among trees is
significantly correlated to functional traits (Rowland et al.,
2013). This suggests that changes in future climate seasonality
could differentially affect the C sink strength of tropical forests

due to local resource availability and tree species composition
(Hofhansl et al., 2014). The recently developed set of ecosystem
models based on plant-traits (van Bodegom et al., 2012; Pavlick
et al., 2013; Fyllas et al., 2014; Sakschewski et al., 2015) has
the potential to capture these changes, since differences in
vegetation communities are depicted as a continuum, rather
than discretely. Implementation of ecosystem models capable
of incorporating more flexible C allocation schemes as well
as trait-based parameterization could strongly improve model
predictions (Franklin et al., 2012) to simulate the response of
tropical forest ecosystems to climate anomalies and other short-
term disturbances.

Overall, these observations indicate strong feedbacks of
species specific and edaphic factors on ecosystem C storage
(see Körner, 2009) and strongly suggest that the interaction
between biodiversity and forest dynamics should be considered
when making projections about the role of tropical forests
in the global C cycle in a CO2-rich future (see Körner,
2004). This highlights the importance of manipulative in-
situ experiments that simulate projected future conditions in
high diversity tropical forest ecosystems and can be used to
improve model-based predictions. Although given the time
horizon of the two experiments neither AmazonFACE nor
AFEX might capture the change in forest species composition,
undoubtedly both experiments provide unique opportunities to
investigate which life-history strategies and functional traits will
be favored or disfavored under eCO2 and increased nutrient
availability. Furthermore, AmazonFACE and AFEX, will provide
crucial information on tropical C allocation schemes and the
response to global changes by investigating allocation of C to
structural and non-structural compounds such as the relative
investment belowground to fine roots, associated mycorrhizae,
and the rhizosphere as well as monitoring potential feedbacks
on autotrophic and heterotrophic CO2 efflux. To that end,
these manipulative and long-term ecosystem scale experiments
aim to assess how predicted increases in atmospheric CO2

concentrations and alterations in resource availability will affect
the growth response and thus the C sink strength of the Amazon
forest ecosystem under projected global changes.

SYNTHESIS

Following an integrated model-experiment approach guiding
the design of in-situ investigations of tropical forest ecosystem
responses to eCO2 and nutrient manipulation in the proposed
ecosystem-scale manipulation experiments will enable us to
test whether eCO2 has the expected fertilization effect at
organ-, plant,- and ecosystem-level. We attempt to enhance
the mechanistic understanding of potential responses of highly
productive Amazonian forests thriving on highly weathered
soils, and investigate whether nutrient (P) limitation affects the
proposed CO2 fertilization effect. Specifically, we will investigate
in-situ if nutrient limitation triggers belowground C allocation to
root biomass, mycorrhizal symbionts, and into the rhizosphere
in exchange for nutrients, or stimulates microbial decomposition
enhancing P recycling. By conducting the proposed long-term
in-situ ecosystem manipulation experiments we aim to resolve
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whether projected increases in atmospheric CO2 concentration
and alterations in nutrient availability will induce shifts in plant C
allocation which could in turn increase C turnover, and decrease
the long-termC storage capacity of the Amazon forest ecosystem.
Generating this novel process-based understanding will further
improve model-based predictions that can be used to upscale
mechanistic principles to larger spatial scales.
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