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Abstract

Te structure and organization o� repetitive elements in �sh genomes are still relatively poorly understood, 
although most o� these elements are believed to be located in heterochromatic regions. Repetitive elements 
are considered essential in evolutionary processes as hotspots �or mutations and chromosomal rearrange-
ments, among other �unctions – thus providing new genomic alternatives and regulatory sites �or gene 
expression. Te present study sought to characterize repetitive DNA sequences in the genomes o� Sem-
aprochilodus insignis (Jardine & Schomburgk, 1841) and Semaprochilodus taeniurus (Valenciennes, 1817) 
and identi�y regions o� conserved syntenic blocks in this genome �raction o� three species o� Prochilo-
dontidae (S. insignis, S. taeniurus, and Prochilodus lineatus (Valenciennes, 1836) by cross-FISH using Cot-
1 DNA (renaturation kinetics) probes. We �ound that the repetitive �ractions o� the genomes o� S. insignis 
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and S. taeniurus have signi�cant amounts o� conserved syntenic blocks in hybridization sites, but with 
low degrees o� similarity between them and the genome o� P. lineatus, especially in relation to B chromo-
somes. Te cloning and sequencing o� the repetitive genomic elements o� S. insignis and S. taeniurus using 
Cot-1 DNA identi�ed 48 �ragments that displayed high similarity with repetitive sequences deposited in 
public DNA databases and classi�ed as microsatellites, transposons, and retrotransposons. Te repetitive 
�ractions o� the S. insignis and S. taeniurus genomes exhibited high degrees o� conserved syntenic blocks 
in terms o� both the structures and locations o� hybridization sites, but a low degree o� similarity with the 
syntenic blocks o� the P. lineatus genome. Future comparative analyses o� other prochilodontidae species 
will be needed to advance our understanding o� the organization and evolution o� the genomes in this 
group o� �sh.
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Introduction

Multiple copies o� DNA sequences, known as “repetitive DNA”, compose large por-
tions o� eukaryotic genomes. Repetitive DNA is generally divided into two groups: (1) 
tandem repeats, which include DNA satellites, minisatellites, and microsatellites; and 
(2) dispersed interspersed repeats composed o� transposable elements (�Es) (�imber-
lake 1978, Charlesworth 1994, Jurka 2005), but there are other gene �amilies with 
sequence repetitions also known as repetitive DNA, such as the genes encoding �or 
ribosomal RNA (rRNA) (Long 1980). While the structure and organization o� this 
genome �raction is still poorly understood in �sh, most o� these non-coding repeti-
tive sequences appear to be located in heterochromatic regions (Fishcher et al. 2004, 
Martins et al. 2011).

Te repetitive sequences were largely considered to be “junk”, “sel�sh”, or “para-
sitic” DNA (Doolittle and Sapienza 1980, Orgel and Crick 1980, Nowak 1994) due 
to the lack o� any known �unctions in the genome �or these sequences. With ever-
increasing volumes o� genomic in�ormation, however, these repetitive sequences are 
now known to play larger roles in the structural and �unctional evolution o� the ge-
nome (Shapiro and Vonsternberg 2005, Biémont and Vieira 2006). Indeed, repetitive 
sequences are now known to be involved in chromosomal rearrangements and respon-
sible �or signi�cant proportions o� the karyotypic variations observed in many groups 
(Kidwell 2002, Schneider et al. 2013).

In Prochilodontidae, centromeric heterochromatin regions have been observed 
in all 54 chromosomes in all o� the species analyzed, as well as in the B chromosomes 
o� Prochilodus lineatus (Valenciennes, 1836) (Pauls and Bertollo 1980, Oliveira et 
al. 2003, Hatanaka et al. 2002, �erencio et al. 2012). However, Semaprochilodus 
insignis (Jardine & Schomburgk, 1841) has additional heterochromatic blocks in 
the terminal regions o� the �rst metacentric pair, while Semaprochilodus taeniurus 
(Valenciennes, 1817) has large bitelomeric markings in metacentric pairs 2 and 3. 



Repetitive sequences: the hidden diversity o� heterochromatin in prochilodontid fsh 467

Te ZZ/ZW sex chromosome system may have originated through an in cis process 
o� heterochromatin accumulation that di�erentiated into the W chromosome – with 
consequent recombination restrictions starting with the �rst chromosome pair (�er-
encio et al. 2012a).

Te phylogenetic biogeography o� the Prochilodontidae indicates that the �am-
ily dates back minimally to approximately 12 million years ago, with higher level 
intra�amilial cladogenic events also dating to at least that time period; these dates are 
congruent with data �rom the �ossil record �or more encompassing groups within the 
Characi�ormes (Sivasundar and Bermingham 2001, Castro and Vari 2004). Phylog-
enies constructed based on morphological (in�ormation �rom osteological and so�t 
anatomical systems) and molecular (A�Pase, D-loop, ND4 and COI) characters 
demonstrates that Prochilodus is the sister group to the clade �ormed by Ichthyoe-
lephas plus Semaprochilodus (�urner et al. 2004). It is believed that heterochromatic 
regions play important roles in the di�erentiation o� this �sh group, despite the rela-
tively stable karyotypic macrostructures o� the Prochilodontidae. Te genetic com-
position o� these regions is still only poorly understood, however, and the only �rm 
in�ormation available concerns the presence o� large amounts o� repetitive DNA se-
quences in the B chromosomes o� P. lineatus (Camacho and Beukeboom 2000) and 
in the W sex chromosome o� S. taeniurus (�erencio et al. 2012b). Tese sequences 
were identi�ed and classi�ed as microsatellites, transposons, and retrotransposons in 
the latter species.

Heterochromatic regions are essential to evolutionary processes because o� their 
ability to propagate and infuence genes (Grewal and Jia 2007), and the present study 
there�ore sought to characterize the moderate to highly repetitive DNA sequences in 
S. insignis and S. taeniurus by cloning and sequencing them and identi�ying conserved 
syntenic blocks o� this �raction in three species o� the �amily Prochilodontidae (S. insig-
nis, S. taeniurus, and P. lineatus) using cross-FISH techniques with Cot-1 DNA probes.

Materials and methods

�en specimens o� S. insignis (six �emales and �our males) and 12 S. taeniurus (seven �e-
males and �ve males) were examined cytogenetically. Tese �sh were captured with the 
authorization o� ICMBio SISBIO 10609-1/2007 at the confuence o� the Negro and 
Solimões Rivers (AM) and at the Amazonas and �apajós (PA) Rivers. Five P. lineatus 
(two �emales and three males) were captured �rom the �ibagi River (PR). Te �sh were 
anesthetized in ice-cold water and were sacri�ced. Voucher specimens were deposited 
in the INPA Animal Genetics Laboratory �sh collection (10034, 10037, 10047 and 
10696). Chromosome preparations were obtained �rom anterior kidney cells using an 
in vivo colchicine treatment (Bertollo et al. 1978). Institutional abbrevoations: UFAM, 
Federal University o� Amazonas; INPA, National Institute o� Amazonian Research; 
UEPG, State University o� Ponta Grossa.
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Isolation of repetitive DNA via re-association kinetics

Enriched samples containing repetitive DNA sequences �rom S. insignis and S. tae-
niurus were constructed based on the renaturation kinetics o� Cot-1 DNA (DNA 
enriched �or highly and moderately repetitive DNA sequences) according to the pro-
tocol described by Zwick et al. 2010) and recently adapted by Ferreira and Martins 
(2008). DNA samples (50 l o� 100-500 ng/ l o� DNA in 0.3 M NaCl) were auto-
claved (121 °C) �or 5 minutes (min) to obtain �ragments ranging �rom 100 to 2000 
base pairs. Next, the DNA was denatured at 95 °C �or 10 min, placed on ice �or 10 
seconds (s) and subsequently placed at 65 °C �or 1 min �or re-annealing. Te samples 
were incubated at 37 °C �or 8 min with 1 U o� S1 nuclease to permit the digestion o� 
single-stranded DNA. Te repetitive portion o� this DNA was recovered by �reezing 
in liquid nitrogen, and the DNA was extracted using phenol-chloro�orm. Te result-
ing DNA �ragments were used as probes �or fuorescence in situ hybridization, cloned 
and sequenced.

Fluorescence in situ hybridization (FISH)

Te repetitive S. taeniurus and S. insignis sequence probes isolated using Cot-1 DNA 
were labeled with digoxigenin-11-dU�P and biotin-16-dU�P (Dig-Nick �ranslation 
mix and Biotin-Nick �ranslation mix; Roche), respectively, by nick translation reactions 
�ollowing the manu�acturer’s instructions. �wo antibodies, namely, anti-digoxigenin-
rhodamine and streptavidin (Li�e �echnologies), were used �or signal detection. Fluo-
rescence in situ hybridization (FISH) was per�ormed on mitotic chromosome spreads 
(Pinkel et al. 1986). Homologous and heterologous in situ fuorescent hybridizations 
were per�ormed using 77% stringency (2.5 ng/µl o� DNA, 50% deionized �ormamide, 
10% dextran sul�ate and 2 × SSC at 37 °C �or 18 hours). Te chromosomes were coun-
terstained with DAPI (2 µg/ml) in Vectashield mounting medium (Vector).

Microscopy/Image Processing

Hybridized chromosomes were analyzed using an Olympus BX51 epifuorescence mi-
croscope, and the images were captured with a digital camera (Olympus DP71) using 
the Image-Pro MC 6.3 so�tware.

Cloning and sequencing of repetitive sequence

One microgram o� the Cot-1 DNA products was cloned using a pMOS Blunt-ended 
PCR Cloning Kit (GE Healthcare), puri�ed using the GFX PCR Puri�cation Kit (GE 
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Healthcare) and sequenced using the Big Dye Kit (Applied Biosystems) in an ABI 
3130 genetic analyzer. Sequence alignment was per�ormed using Clustal W (Tomp-
son et al. 1994), which is included in the BioEdit 7.0 so�tware program (Hall 1999). 
Each clone was used as a query in BLAS�N (Basic Local Alignment Search �ool nu-
cleotide) searches against the NCBI nucleotide collection (http://www.ncbi.nlm.nih.
gov) and in searches against the Repbase database (Jurka et al. 2005) at the Genetic 
In�ormation Research Institute (Giri) (http://www.girinst.org/repbase/) using CEN-
SOR so�tware (Kohany et al. 2006).

Results

Hybridization o� the S. insignis Cot-1 DNA probe to its own chromosomes demon-
strated that the repetitive elements o� its genome were located in the centromeric re-
gions o� all chromosomes, as well as in the terminal region o� several chromosomes 
(Fig. 1a and b). Te cross-hybridization o� the S. taeniurus Cot-1 DNA probe to the 
chromosomes o� S. insignis revealed markers in the centromeric region, although 
they were smaller than those observed using species-speci�c probes (Fig. 1c). Ad-
ditionally, no terminal markers were observed in S. insignis using the heterologous 
probe, indicating that this species has chromosome pairs (Fig. 1d, arrowheads) that 
carry species-speci�c repetitive sequences not shared with S. taeniurus (Fig. 1a, b, 
c and d).

Hybridization o� the S. taeniurus Cot-1 DNA probe to its own chromosomes like-
wise revealed that repetitive sequences were abundant in the genome o� this species 
and located in various regions (e.g., centromeric, interstitial, and terminal) o� the en-
tire chromosome complement (Fig. 1e and g). Cross-FISH reactions were per�ormed 
using the S. insignis Cot-1 DNA probe and demonstrated the presence o� conserved 
syntenic blocks in several chromosomal regions (Fig. 1�). S. taeniurus also displayed 
species-speci�c repetitive DNA sites located in the centromeric and terminal regions o� 
14 chromosomes (Fig. 1h, arrows), with no observed hybridizations o� the S. insignis 
Cot-1 DNA probe to these same regions (Fig. 1e, �, g, and h).

Both Cot-1 DNA probes o� S. insignis and S. taeniurus displayed positive hybridi-
zation signals in the terminal regions o� the entire complement o� P. lineatus chromo-
somes. Te supernumerary (i.e., B) chromosomes (Fig. l, arrowheads) revealed hybrid-
ization signals only with the S. taeniurus Cot-1 DNA probe. Te same marker pattern 
seen on one o� the B chromosomes was also observed on the autosomal chromosomes, 
while only one o� the chromosome arms exhibited hybridization signals shared with 
the other B chromosome (Fig. 1 i, j, k and l).

Cloning and sequencing the repetitive genome elements obtained �rom S. insignis 
and S. taeniurus Cot-1 DNA identi�ed 48 DNA �ragments o� varying sizes (GenBank: 
JX848379–JX848393). 71% o� repetitive DNA diversity sampled (Cot-1 DNA) o� 
S. insignis displayed high similarity to microsatellites, 17% to DNA transposons, and 
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Figure 1. Cot-1 DNA �raction hybridization in three species o� Prochilodontidae. a S. insignis chromo-
somes counterstained with DAPI b Cot-1 DNA �rom the S. insignis genome hybridized to its own chro-
mosomes c Cot-1 DNA �rom the S. taeniurus genome hybridized to S. insignis chromosomes d Double-
FISH o� the Cot-1 DNA �raction e S. taeniurus chromosomes counterstained with DAPI f Cot-1 DNA 
�rom the S. taeniurus genome hybridized to its own chromosomes g Cot-1 DNA �rom the S. insignis 
genome hybridized to the S. taeniurus chromosomes h Double-FISH o� the Cot-1 DNA �raction i P. lin-
eatus chromosomes counterstained with DAPI j Cot-1 DNA �rom the S. insiginis genome hybridized to P. 
lineatus chromosomes k Cot-1 DNA �rom the S. taeniurus genome hybridized to P. lineatus chromosomes 
l Double-FISH o� the Cot-1 DNA �raction.

10% to retrotransposons (�able 1); 75% o� the repetitive sequences sampled o� S. 
taeniurus displayed high similarity to microsatellites, 5% to transposons, and 15% to 
retrotransposons (�able 2).

Discussion

Diversity of repetitive DNAs in the genomes of S. insignis and S. taeniurus

Recent studies have indicated that repetitive sequences have de�nitely infuenced ge-
nome evolution by controlling gene activity and by their involvement in chromosomal 
rearrangements (Valente et al. 2011). Te cloning and sequencing the repetitive ge-
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Table 1. Nucleotide homology o� the Cot-1 DNA �raction clones o� Semaprochilodus insignis to known 
sequences in public databases. BLAS�N results and their respective identities are displayed.

Isolate 
clone Repetitive sequences Similarity Identities

Sin1 DNA transposon EnSpm-3_DR (RepBase/GIRI*) 70%
Sin2 Microsatellite Cyprinus carpio (GenBank JN756399.1) 92%

Sin3 Microsatellite Hypostomus gymnorhynchus
(GenBank HM545164.1) 83%

Sin4 Non-L�R retrotransposon HERO-2_DR (RepBase/GIRI*) 78%

Sin5 Microsatellite/Retrotransposon Colossoma macropomum (HM579956.1) 
SINE_2 (RepBase/GIRI*) 79%–75%

Sin6 DNA transposon Mariner/�c1 (RepBase/GIRI*) 76%
Sin7 DNA transposon ERV2 Endogenous Retrovirus (RepBase/GIRI*) 77%
Sin8 Microsatellite Cyprinus carpio (GenBank JN733372.1) 100%
Sin9 Non-L�R retrotransposon Rex1 (RepBase/GIRI*) 73%

Sin10 Microsatellite Cyprinus carpio (GenBank JN771242.1) 91%
Sin11 DNA transposon Labeo rohita�c1-like (GenBank AY083617.1) 77%
Sin12 Microsatellite Cyprinus carpio (GenBank JN761177.1) 100%
Sin13 Microsatellite Hippoglossus hippoglossus (GenBank AJ270780.1) 89%
Sin14 DNA transposon Helitron-2_DR (RepBase/GIRI*) 83%
Sin15 Microsatellite Cyprinus carpio (GenBank JN785563.1) 83%
Sin16 Microsatellite Salmo salar CAG-repeat (GenBank Y11457.1) 87%
Sin17 Microsatellite Eleutheronema tetradactylum (GenBank AB697177.1) 80%
Sin18 Microsatellite Oncorhynchus mykiss (GenBank AY039630.1) 86%
Sin20 Microsatellite Prochilodus lineatus (GenBank AY285824.1) 84%
Sin21 Microsatellite Cyprinus carpio (GenBank JN745523.1) 89%
Sin22 Microsatellite Cyprinus carpio (GenBank JN757227.1) 90%
Sin23 Microsatellite Cyprinus carpio (GenBank JN737559.1) 92%
Sin38 Microsatellite Cyprinus carpio (GenBank JN755429.1) 100%
Sin39 Microsatellite Cyprinus carpio (GenBank JN744936.1) 92%
Sin41 Microsatellite Cyprinus carpio (GenBank JN746351.1) 95%
Sin42 Microsatellite Cyprinus carpio (GenBank JN757934.1) 81%
Sin48 Microsatellite Cyprinus carpio (GenBank JN731077.1) 70%

* Database Repbase (http://www.girinst.org)

nome elements obtained �rom S. insignis and S. taeniurus Cot-1 DNA displayed high 
similarities to repetitive sequences deposited in public DNA databases and classi�ed as 
microsatellites, transposons, and retrotransposons.

Although some repetitive sequences are shared between the two Semaprochilodus 
species analyzed here, DNA sequencing indicated that the genomes o� S. insignis and S. 
taeniurus were composed o� di�erent classes o� repetitive sequences. Most o� the clones 
displayed high similarity to microsatellites known �rom �sh species in the order Char-
aci�ormes (Colossoma macropomum Cuvier, 1816) and the �amily Prochilodontidae 
(Prochilodus mariae Eigenmann, 1922). We believed that the microsatellites were more 
abundant in this analysis because the method used to obtain the repetitive �raction o� 
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Table 2. Nucleotide homology o� the Cot-1 DNA �raction clones o� Semaprochilodus taeniurus to known 
sequences in public databases. BLAS�N results along with their respective identities are displayed.

Isolate 
clone Repetitive sequences Similarity Identities

Ste1 Microsatellite Prochilodus mariae (GenBank JF832400.1) 87%
Ste2 Microsatellite Epinephelus fuscoguttatus (GenBank GU799242.1) 82%
Ste3 Microsatellite Cyprinus carpio (GenBank JN779618.1) 96%
Ste4 DNA transposon �c1_FR2(RepBase/GIRI*) 82%
Ste5 Microsatellite Cyprinus carpio (GenBank JN756719.1) 87%
Ste6 Microsatellite Cynoglossus semilaevis (GenBank EU907150.1) 96%
Ste7 Microsatellite Prochilodus mariae (GenBank JF832400.1) 84%
Ste8 Non-L�R retrotransposon L2-2_DRe (RepBase/GIRI*) 86%
Ste9 Microsatellite Cyprinus carpio (GenBank JN21488.1) 96%

Ste10 Microsatellite Cyprinus carpio (GenBank JN731879.1) 100%
Ste11 Microsatellite Cyprinus carpio (GenBank JN28181.1) 87%
Ste12 Microsatellite Prochilodus mariae (GenBank JF832400.1) 80%
Ste13 Microsatellite Salmo salar (GenBank AJ402727.1) 100%
Ste14 Microsatellite Cyprinus carpio (GenBank JN80674.1) 95%
Ste15 Microsatellite Cyprinus carpio (GenBank JN721488.1) 96%
Ste16 Adeovirus Bovine Adenovirus type2 99%
Ste17 Non-L�R retrotransposon SINE3/ 5S (RepBase/GIRI*) 82%
Ste18 Microsatellite Brycon amazonicus (GenBank JQ993450.1) 89%
Ste19 Microsatellite Cyprinus carpio (GenBank JN759566.1) 87%
Ste20 Non-L�R retrotransposon Rex1-9_X� ( RepBase/GIRI*) 75%
Ste21 Non-L�R retrotransposon L2 82%

* Database Repbase (http://www.girinst.org)

the genome (renaturation kinetics) generates short �ragments o� DNA (200−300bp) 
enabling the identi�cation o� microsatellites with �ull homology.

Microsatellites have been observed in a wide range o� organisms and are common 
and widespread in both prokaryote and eukaryote genomes. Among the �unctions as-
signed to microsatellites are their participation in chromatin organization, DNA rep-
lication, recombination, and the regulation o� gene activities (Martins et al. 2011, Li 
et al. 2011). In �sh species such as Steindachneridion scripta (Miranda Ribeiro, 1918) 
Rineloricaria latirostris (Boulenger, 1900), and Danio rerio (Hamilton, 1822) these 
repetitive sequences tend to be clustered in the centromeric and telomeric regions 
(Shimoda et al. 1999, Vanzela et al. 2002). Future studies aimed at mapping microsat-
ellites within the chromosomes o� Prochilodontidae will �urther our understanding o� 
the roles o� those sequences in chromosomal evolution in that group.

A certain proportion o� these DNA �ragments displayed high degrees o� similarity 
to transposable elements (i.e., both transposons and retrotransposons) (�ables 1 and 
2) �ound in the genomes o� �sh species such as Xiphophorus maculates Gunther, 1866, 
Leporinus elongatus Valenciennes, 1850 and Oryzias hubbsi Roberts, 1998 (Vol� et al. 
2000, Bohne et al. 2012, Marreta et al. 2012, �akehana et al. 2012).
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Te sequences described in the present study may play an evolutionary role in the 
genomes o� S. insignis and S. taeniurus as one o� the sequences identi�ed in the genome 
o� S. taeniurus (Ste17) displayed 82% homology with a retrotransposon called SINE3 
identi�ed by (Kapitonov and Jurka 2003) as originating �rom 5S rRNA. As other 
species o� the Prochilodontidae �amily have only one pair o� chromosomes carrying 
these ribosomal sites, this in�ormation strengthens the hypothesis that the multiple 
5S rDNA sites observed in S. insignis and S. taeniurus are pseudogenes (or repetitive 
sequences) derived �rom 5S rDNA (�erencio et al. 2012a). In Gymnotus paraguensis 
(Albert & Crampton, 2003) the multiplication o� 5S rDNA gene clusters might has be 
caused by the involvement o� transposable elements because the N�S has high identity 
(90%) with a �c1-like transposon (Silva et al. 2011).

We were also able to identi�y sequences in S. insignis that exhibited high similar-
ity with the transposable element Helitron. In maize, this �E seems to continually 
produce new non autonomous elements responsible �or the duplicative insertion 
o� gene segments at new locations and �or the unprecedented genomic diversity o� 
this species (Morgante et al. 2005). Intact Helitron elements were identi�ed in the 
sex-determining region o� the sex chromosomes o� the platy�sh X. maculatus, sug-
gesting that �E are still active in the genome o� platy�sh and related species – where 
they may have roles in the evolution o� sex chromosomes and other genomic regions 
(Zhou et al. 2003).

Tc1/mariner (isolated �rom the genomes o� S. insignis and S. taeniurus) are the 
most widespread super�amily o� DNA transposons and can be �ound in �ungi, plants, 
ciliates, and animals (including nematodes, arthropods, �sh, �rogs, and humans). Most 
o� the transposon copies isolated �rom vertebrates are clearly inactive remnants o� once 
active transposons that were inactivated by mutations, but only a�ter success�ully colo-
nizing their genomes (Plasterk et al. 2009, Ivics et al. 2006).

Te retroelement Rex1 was also detected in the repetitive �raction o� the genomes 
o� S. insignis and S. taeniurus. Te Rex �amily has been widely studied in �sh, and 
a number o� di�erent lineages have been described in this group (Vol� et al. 2000) 
where they are known to be scattered or grouped into conspicuous clusters in the chro-
mosomes o� Neotropical cichlids (Mazzuchelli and Martins 2009, Gross et al. 2009, 
�eixeira et al. 2009, Oliveira et al. 1999). Tese elements display compartmentalized 
distributions in some autosomes and show clear signals along the �ull lengths o� W 
chromosomes in S. taeniurus (�erencio et al. 2012).

Te Line2 element was detected only in the repetitive �raction o� the S. taeniurus 
genome. Tis repetitive sequence may be present in the S. insignis genome but simply 
not sampled in our study, or alternatively, it may have been eliminated �rom the ge-
nome o� this species. FISH showed that Line2 sequences are organized in small clusters 
dispersed over all o� the chromosomes o� Oreochromis niloticus (Linnaeus, 1758), but 
with higher concentrations near chromosome ends (Oliveira et al. 1999). Line elements 
in mammals appear clustered in the G-banding regions o� the chromosomes, and on the 
sex chromosomes in some cases (Wichman et al. 1992, Fishcher et al. 2004).
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Repetitive DNA organization in chromosomes

Repetitive DNA sequences comprising mostly the heterochromatic portions o� the 
genome were observed using the C-banding technique. Previous studies (Feldberg et 
al. 1987, Vicari et al. 2006, �erencio et al. 2012b) revealed that this technique re-
vealed that repetitive DNA sequence �ractions in the genomes o� �sh o� the �amily 
Prochilodontidae are not abundant and are located mainly in the centromeric regions 
o� the chromosomes and, less �requently, in the terminal regions o� the long arms o� 
some chromosome pairs. Large heterochromatic blocks can be observed, however, in 
the supernumerary chromosomes (i.e., the B chromosomes) o� Prochilodus spp. (Vi-
cari et al. 2006, Voltolin et al. 2011) and in the W sex chromosome o� S. taeniurus 
(Feldberg et al. 1987, �erencio et al. 2012a). Fluorescence in situ hybridization using 
species-speci�c probes o� the repetitive �ractions o� the genomes partially con�rmed 
the heterochromatic pattern demonstrated with the C-banding technique in both S. 
insignis and S. taeniurus – and positive signals were detected in the centromeric regions 
o� all o� their chromosomes. Markers were also observed in the terminal regions o� 
some chromosomes, con�rming that repetitive DNAs are also present in this area, 
although heterochromatin was not observed. Repetitive sequences located outside 
o� heterochromatic regions are believed to signi�cantly infuence genome evolution, 
particularly by controlling and regulating gene activities, and genome sequencing has 
�requently revealed short and truncated copies o� repetitive sequences in euchromatic 
genomic regions (Fischer et al. 2002, Biémont and Vieira 2006, �imberlake 1978, 
Yuan and Wessler 2011, �orres et al. 2011). Tis observation does not necessarily in-
dicate that these repetitive sequences are constitutively expressed, however, since they 
tend to be silenced and undergo subsequent molecular deterioration. In other words, 
these sequences becomes inactive and progressively accumulate mutations, insertions, 
and deletions at neutral rates until completely losing their identities or become lost in 
the host genome (Fernández-Medina et al. 2012). Te presence o� repetitive DNAs in 
euchromatic regions has been observed in many groups, such as insects (Cabral-de-
Mello et al. 2011), �sh (�eixeira et al. 2009, Valente et al. 2011), and lizards (Pokorná 
et al. 2011), and these �Es have acquired structural/regulatory �unctions so that their 
accumulation in euchromatic regions may lend advantages to the host genome.

Cross-hybridizations o� S. insignis and S. taeniurus showed patterns similar to those 
observed in homologous hybridization – which suggests that this portion o� the ge-
nome has been conserved throughout evolution, perhaps due to a �unctional role. 
However, revealed that these species have species-speci�c centromeric and terminal 
sites not identi�ed by heterologous hybridization.

Cross-FISH using S. insignis and S. taeniurus Cot-1 DNA probes revealed hybridi-
zation signals in the subterminal regions o� P. lineatus, in contrast to the heterochro-
matic pattern revealed by the C-banding technique with heterochromatin blocks being 
primarily observed in the centromeric region (Pauls and Bertollo 1990, Venere et al. 
1990, Cavallaro et al. 2000, Artoni et al. 2006, Vicari et al. 2006, Voltolin et al. 2011). 
Tese data indicate that the repetitive �raction o� centromeric heterochromatin o� P. 
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lineatus is di�erent �rom the other two species examined (S. insignis and S. taeniurus) 
and that shared repetitive sequences are located on the subtelomeric portions o� their 
chromosomes. Tis same pattern was observed in three species o� Prochilodus using 
(AA���)n microsatellite (Hatanaka et al. 2002) and W-speci�c probes (�erencio et 
al. 2012b).

A common karyotypic �eature o� species belonging to the genus Prochilodus is the 
presence o� supernumerary chromosomes (B chromosomes). Many studies o� B chro-
mosomes have indicated that these supernumerary chromosomes are rich in repetitive 
sequences and, in certain cases, may contain a number o� �unctional genes (Camacho 
2005, Ruiz-Estévez et al. 2012). Te P. lineatus population analyzed in the present 
study displayed two B chromosomes with distinct hybridization sites. Te S. insignis 
Cot-1 DNA probe did not hybridize to the B chromosomes, possibly because the re-
petitive �raction o� the S. insignis genome is not shared with the B chromosomes o� P. 
lineatus. One possible hypothesis explaining this result would be that these repetitive 
sequences have undergone rapid di�erentiation and evolution in the genome o� S. 
insignis, resulting in a loss o� homology with sequences on the B chromosomes o� P. 
lineatus. Another explanation could be due to the �act it is di�erent genera, and there-
�ore the Bs �ound in each species could have di�erent origins. Te S. taeniurus Cot-1 
DNA probe was positive, revealing sequence sharing with P. lineatus B chromosomes. 
A number o� studies have suggested that B chromosomes can infuence sex determina-
tion in �sh (Noleto et al. 2012, Yoshida et al. 2012), although no relationship between 
the occurrence o� B chromosomes and sex determination has been observed in P. lin-
eatus. Te B chromosomes detected in P. lineatus were recently shown to demonstrate 
positive signals when hybridized with the W-speci�c probe, indicating the sharing o� 
repetitive DNA �amilies between these two species (�erencio et al. 2012a).

Conclusions

Results �rom DNA sequencing indicated that the genomes o� S. insignis and S. tae-
niurus comprise di�erent classes o� repetitive sequences that may have played impor-
tant roles in their evolution. Te repetitive �ractions o� the S. insignis and S. taeniurus 
genomes also exhibit high degrees o� conserved syntenic blocks in terms o� both the 
structure and location o� hybridization sites. However, the genomes o� both S. insignis 
and S. taeniurus displayed a low degree o� syntenic blocks with the P. lineatus genome, 
especially with regard to the B chromosome, and the origin o� this situation has not 
yet been elucidated.
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