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Collective phenomena, whereby agent–agent interactions determine spatial

patterns, are ubiquitous in the animal kingdom. On the other hand, movement

and space use are also greatly influenced by the interactions between animals

and their environment. Despite both types of interaction fundamentally influ-

encing animal behaviour, there has hitherto been no unifying framework for

the models proposed in both areas. Here, we construct a general method

for inferring population-level spatial patterns from underlying individual

movement and interaction processes, a key ingredient in building a statistical

mechanics for ecological systems. We show that resource selection functions,

as well as several examples of collective motion models, arise as special

cases of our framework, thus bringing together resource selection analysis

and collective animal behaviour into a single theory. In particular, we focus

on combining the various mechanistic models of territorial interactions in

the literature with step selection functions, by incorporating interactions into

the step selection framework and demonstrating how to derive territorial pat-

terns from the resulting models. We demonstrate the efficacy of our model by

application to a population of insectivore birds in the Amazon rainforest.
1. Introduction
Recent years have seen an explosion in the number of studies devoted to collective

animal movement modelling, largely enabled by the availability of fast compu-

tational power and vastly improved tracking data [1,2]. They have succeeded in

explaining a wide variety of patterns observed in nature due to the movements

and interactions of animals [3,4], such as bird flocking [5], ant raids [6] and fish

schooling [7]. Furthermore, in the last few years, the collective behaviour paradigm

has been extended to include territorial patterns, which arise from conspecific

avoidance mechanisms rather than those of alignment or attraction [8–10].

Despite these myriad advancements, animal-interaction models remain dis-

parate and varied, with no formulation of a unifying framework encompassing

the variety of interaction mechanisms, direct or mediated, attractive or repulsive.

This makes it difficult to compare models quantitatively and so determine which

behavioural aspects are necessary for causing the observed behaviour. Though

several techniques have recently been proposed for selecting between models

of collective movement and interactions [11], they tend to be system-specific.

For example, fish repulsion–alignment–attraction mechanisms have been

measured using several different techniques [12–14], as have the geometric

nature of their interactions [15] and their decision processes [16,17]. Other

examples include alignment and leadership decisions in bird flocks [5,18,19].

There are also a few theoretical studies aimed at more general application

(e.g. [20]). However, it is not clear whether they can readily be applied to behaviours

beyond grouping phenomena such as swarming, flocking or schooling.

On the other hand, mechanistic models of territorial interactions have typically

been analysed by fitting the emergent spatial patterns, rather than the underlying

movement processes, to positional data (e.g. [10,21]). While this is a reasonable
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Table 1. Various models from the literature that can be formulated as CSSFs. Interaction models are classified as one or more of animal – environment (E),
between-animal direct interactions (BD), between-animal mediated interactions (BM), alignment-and-attraction models (AA), conspecific avoidance models (CA).

model reference interaction type

resource selection Boyce et al. [36] E

step selection Fortin et al. [27] E

individual-based collective behaviour Couzin et al. [4] BD, AA

differential equation collective behaviour Eftimie et al. [37] BD, AA

army ant foraging Deneubourg et al. [6] BM, AA

individual-based territory formation Giuggioli et al. [9] BM, CA

differential equation territory formation Moorcroft & Lewis [8] BM, CA
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way of testing hypotheses about the underlying causes of

spatial patterns [22], it is not sufficient for concrete quantifi-

cation of the underlying movement and interaction processes,

because many different model processes can give rise to

the same emergent spatial patterns. Furthermore, territorial

modelling approaches have hitherto followed two separate

paradigms. The first involves constructing partial differen-

tial equations (PDEs) either from details of the underlying

movement and interaction processes or from more phenomen-

ological descriptions, and then using these equations to derive

territorial patterns mathematically [8,21–23]. The second

approach is based more on statistical physics, analysing the

individual movement and interaction processes themselves in

discrete space, without taking a mean-field continuum limit

[9,24]. A recent review explains the biological lessons that can

be learned from these models [25]. These approaches would

benefit from unification both with each other and with the

rest of the collective behaviour literature.

Parallel to the collective animal literature, many studies have

sought to understand and predict space use patterns by examin-

ing interactions between animals and their environment.

Resource selection analysis, positing that animal space use is a

function of the distribution of underlying resources, is perhaps

the widest used tool in this regard and has a long history [26].

Recently, this has been integrated with animal movement pro-

cesses by constructing step selection functions [27–29], where

the selection of resources is constrained by the ability of an

animal to move. Such functions are built by rigorously deriving

parameter values from the data using well-developed statistical

techniques [30]. Step selection functions, in turn, have been used

to build mechanistic models to derive space use patterns from

the underlying movement processes and animal–environment

interactions [31], representing the first step in unifying resource

selection with mechanistic models.

Some studies in the step selection function literature have

factored into their analysis either positions of other individ-

uals [32] or traces left in the environment by animals [33].

However, to model simultaneously more than one interacting

group of animals, so that it is possible to build a mechanistic

model to predict the resulting space use patterns, would

require having different interacting movement kernels for

each group. For example, in a territorial system there would

be one function for each group maintaining a territory.

These would then have to be coupled together so that each

function depends on the animals modelled by the other.

In this paper, we present a modelling framework that unifies

movement with both animal–environment and inter-animal

interactions. The inter-animal interactions may either be direct
or mediated by a stigmergent process [34,35] such as phero-

mone deposition or visual cues. Our framework includes as

special cases both step selection functions and the two

approaches to mechanistic territorial modelling mentioned

above. Though we focus specifically on combining territorial

interactions into the concept of step selection, our framework

also happens to incorporate a variety of other collective

motion models, suggesting far broader application (table 1).

As such, our framework provides a useful way to codify move-

ment and interaction processes, giving a generic starting point

for modelling these processes and a clear way of testing which

combinations of them best describe the underlying data. This

will both help future researchers in model construction and pro-

vide a concrete means by which to compare and contrast

different modelling approaches.

We show how to use our model to test hypotheses about the

interaction mechanisms underlying territorial behaviour, by

application to movement data on a community of territorial

insectivore bird flocks in the Amazon rainforest. Parameter

values for a model of movement and territorial interactions

naturally arise from this hypothesis testing. This model can

then be analysed either using PDE techniques [8] or by simu-

lation analysis [9,24]. This enables the spatial territorial

patterns to be derived from the underlying movement and inter-

action processes, which can be compared with spatial data. We

demonstrate how to make this comparison quantitative, thereby

giving a technique for determining which processes are the

key drivers of space use in the study population. As such, the

framework used here provides a vital bridge between the selec-

tion of models on the individual level and the validation of their

emergent features on the population level. In figure 1, we give a

schematic that represents the central place of coupled step selec-

tion functions (CSSFs) for the programme of constructing a

‘statistical mechanics for ecological systems’ [38].
2. Material and methods
2.1. Modelling framework
Our model is based around the notion of a step selection function

[27]. However, simultaneous modelling of various interacting

animals, or groups of animals, requires having a different step

selection function for each animal or group. Therefore, instead

of having one function that models all agents, as with previous

approaches, we construct a different function for each agent

and link them together with a coupling term. We use the term

‘agent’ here to refer to either a single animal, or a group of ani-

mals that are modelled as moving together as a single entity,



‘microscopic’ movement
and interaction data

‘macroscopic’ emergent
spatial patterns

coupled step
selection functions

simulations/
algorithms

mathematical
analysis

M1 M2 MN

Figure 1. The role of CSSFs in linking movement to emergent spatial pat-
terns. Different candidate models M1, . . . , MN can be tested against
‘microscopic’ movement and interaction data using the techniques in the
Material and methods section. The best models can then either be simulated
or mathematically analysed to derive spatial patterns. These, in turn, can be
compared to the ‘macroscopic’ spatial distributions in the data (see Material
and methods) to test whether the mechanisms being modelled are sufficient
for accurate predictions of spatial patterns.
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for example a pack or a flock. The result is what we call a system

of CSSFs, where each function has the following form:

f t,t
i (xjy, u0)|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}
movement
probability

/fi(xjy, u0)|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
step length
and turning
angle

�Wi(x, y, E)|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
environment
interactions

� Ci(x, y, Pt
i )|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}

collective
interactions

(2:1)

represented pictorially in figure 2. The function f t,t
i (xjy, u0) is

the probability of agent i moving to position x at time t þ t, given

that the agent was at position y at time t and had arrived there on

a bearing u0. The term fi(xjy, u0) represents the movement process

of agent i, disregarding the effect of the environment or other

agents. For example, this could contain the step length and turning

angle distribution for a correlated random walk [39].

The function Wi(x, y, E) is a weighting function contain-

ing information about the desirability of moving across the

environment E from position y to x. For example, if there is a

partial barrier to movement between y and x, then Wi(x, y, E)

may be lower than if the barrier were not there. On the

other hand, if x were in a very desirable habitat for the agent com-

pared with y, then Wi(x, y, E) would be higher than if the habitats

were equal in quality. See [27] for a good example of the variety of

animal–environment interactions that can be modelled this way.

The collective aspects of motion, i.e. the agent–agent inter-

actions, are represented by Ci(x, y, Pt
i). The term Pt

i represents

both the population positions and any traces of their past positions

left either in the environment or in the memory of agent i. For

example, if the agents were schooling fish, then perhaps the perti-

nent interactions would be direct [40]. However, if the agents were

ants then Pt
i might represent the pheromones left by other ants,

to which ant i responds by tending to move up the pheromone

gradient [6]. As a third example, if the agents were territorial

bird flocks, then Pt
i might include the memory that the birds in

flock i have of past territorial conflicts or vocalizations. In most rea-

listic cases, including the ones detailed here, this enables us to

convert ostensibly non-Markovian processes, such as memory
and correlations, into one-step Markov processes, possibly

requiring high dimensions to encapsulate Pt
i appropriately.

As f t,t
i (xjy, u0) is a probability, it must integrate or sum to 1,

depending on whether continuous space or discrete space is

being used, respectively. Therefore, we use the / sign in

equation (2.1), noting that this becomes an equality if the right-

hand side is divided by the integral (continuous space) or sum

(discrete space) over the possible target positions x.

We demonstrate the generality of our formalism by show-

ing that it reduces to ordinary step selection functions [27],

resource selection functions [36] and a variety of previously

published examples of collective motion models. The latter

include models of trail-following ants [6], collective patterns in

animal populations through alignment and attraction [4,37]

and territorial canids [8,10,24].

It is possible to generalize equation (2.1) further by writing the

right-hand side as an arbitrary function of x, y, t, u0, E and Pt
i . This

would enable the construction of dependencies between the three

aspects of movement, environmental interactions and collective

interactions. For example, this could describe the animal’s speed

varying over time due to seasonal changes, or the turning angle

distribution being affected by habitat type, and so forth. However,

the models from both previous collective animal behaviour studies

and the step/resource-selection literature tend not to incorporate

such dependencies, because they can be written in the form of

equation (2.1). Therefore, for simplicity, we treat the functions fi,

Wi and Ci as independent.

2.2. Application to bird data
As a demonstration of how to apply our model, we use move-

ment data on a community of territorial insectivore bird flocks

in the Amazon rainforest. These flocks are multi-species, with

around five to 10 mating pairs consistently present sharing a ter-

ritory [41]. Each pair will defend its territory from conspecifics,

using a mixture of vocalizations and direct territorial conflicts

[42]. The birds from each flock meet together at a ‘gathering

point’ at dawn every day, usually in a central position within

their territory, from where they forage within the territory for

around 11–12 h, moving together as a flock.

We use flock movement data from 11 different territories to

test hypotheses about the territorial interaction mechanisms

used by the birds. We focus, for simplicity, on the vocal aspect

of interactions. Vocalizations make neighbouring flocks aware

of areas they have recently visited, causing the neighbours to

alter their movement processes in or near these areas. We test

three hypotheses: whether (1) flocks are likely to avoid areas

that neighbours have visited in the past, due to the vocalizations

made there, (2) flocks tend to move back towards their gathering

site having visited such an area, (3) the time since the area was

visited by a neighbour affects the response of the flock, so that

old vocalizations are ignored. This demonstrates the ability of

our modelling framework to select between competing theories

about the nature of interaction mechanisms.

We analysed movement of 11 different flocks in the Amazon

rainforest over 3 years during the dry season between June and

November. The study site is about 70 km north of Manaus,

Brazil. They were each tracked for between 4 and 18 days. The

flock positions were recorded every minute during the time that

they were active. Flock activity is conspicuous, so that birds can

be followed on foot. As flocks moved, geolocations were recorded

with a hand-held GPS unit (Garmin Vista HCX). The observer

maintained a distance of 10–20 m from the flocks to ensure no

alarm or avoidance behaviour was induced in the birds.

To examine which territorial interaction processes best fit

these data, we constructed a CSSF (equation (2.1)) where the

terms fi(xjy, u0) and Wi(x, y, E) were obtained from a previous

study on the same population [43]. In that paper, we found

that setting fi to be a product of the exponentiated Weibull
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Figure 2. Where next? A typical CSSF, giving the probability of an animal’s next move, dependent on territorial marks and resource quality. This is determined both by the
strength of territorial marks of conspecifics, given in (a), and the quality of the resources (b). The strength of territory marks in this example does not change in the
Y-direction, so that animal 1 has territory on the left and animal 2 on the right. The probability of animal 1’s (resp. animal 2’s) next position after some time interval t,
given that its current position is in the middle of the landscape (black dot), is shown in (c) (resp. (d )). As each animal moves, it marks the terrain causing the territorial
profile to change over time, which in turn influences the other animal’s movements. This causes a coupling between their respective step selection functions.
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distribution [44] for the step lengths and a von Mises distribution

[45] for the turning angles fitted the data well. This led to the

following step length and turning angle distribution:

fi(xjy,u0)¼ac
b
jx�yj

b

� �a�1

exp � jx�yj
b

� �a� �
1�exp � jx�yj

b

� �a� �� �c�1

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
step length distribution

� exp[kcos(u�u0)]

2pI0(k)|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}
turning angle distribution

, (2:2)

where each agent i is an individual flock, u is the bearing from y

to x, a ¼ 1.06+0.03, b ¼ 6.90+0.34, c ¼ 1.82+0.11, k ¼ 0.336+
0.015 (error bars are 1 s.d.) and I0(k) is a modified Bessel function

of the first kind. The best fit model from [43] for the Wi term is

Wi(x, y, E)¼C(x)aT(x)�b, where C(x) and T(x) are, respectively,

the forest canopy height and topography in metres, at position x.

The time interval t is 1 min and the best fit values for the par-

ameters are a ¼ 0.0952+0.037 and b ¼ 1.658+0.345 (error

bars are 1 s.d.). These were derived by performing the model

fit while neglecting interaction mechanisms (see [43] for details).

For the interaction termCi(x, y, Pt
i), we setPt

i(x) ¼ T� if any flock

j = i is at position x at time t, and Pt
i(x) ¼ min {Pt�t

i (x)� t, 0}

otherwise. Here, T* represents the amount of time a bird will remem-

ber a conspecific bird call from a particular location, and so respond
to this memory when in that location. The cinereous antshrike from

each flock tends to make a call about every 2–5 min, which can

be detected by other birds at a distance of about 50 m (K. Mokross

2010, personal observation). In our model, we implicitly assume,

for simplicity, that birds make calls each time they move and that

they are always heard by neighbouring flocks. Note that this con-

struction is similar in mathematical form to the territoriality model

from [10], used to uncover behavioural mechanisms in a red fox

(Vulpes vulpes) population. However, in that study, T* represented

the longevity of scent cues rather than the memory of vocalizations.

To test hypothesis (1), we examined whether using the

following coupling function:

Ci(x, y, Pt
i ) ¼ {[T� � Pt

i (x)]/T�}g (2:3)

gives a better fit to the data than the case of no interactions,

Ci(x, y, Pt
i ) ¼ 1. For hypothesis (2), we used the following

coupling function:

Ci(x, y, Pt
i) ¼ V (kI[Pt

i (y) . 0],|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}
attractive
strength

u� ug)|fflfflffl{zfflfflffl}
direction
bias

, (2:4)

with T* ¼1, where V(l, c) is a von Mises distribution (a single-

mode distribution often used in the ecology literature for biasing

angles [45]), I[X ] is an indicator function equalling 1 if X is true

and 0 otherwise, u is the bearing from y to x and ug is the bearing
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from y to the gathering point. For hypothesis (3), we used the

coupling function from equation (2.4), but with T* a finite free

parameter, to test whether allowing T* to be finite significantly

improves the fit.

We fitted the various models to the data using a maximum-

likelihood technique, whereby we found the free parameters that

maximize the product over i and n of f ti,n ,t
i (xi,nþ1jxi,n, ui,n), where

xi,0, . . . , xi,Ni are the positions of flock i at times ti,0, . . . , ti,Ni .

To find this maximum, we used the Nelder–Mead simplex algor-

ithm as implemented in the Python maximize() function from

the SciPy library [46]. For hypothesis (1), the free parameters are

T* and g. For hypothesis (2), the free parameter is k, and for

(3) they are T* and k. The p-values for hypothesis testing were

obtained using the likelihood ratio test.

One of the strengths of the CSSF approach is that the result of

hypothesis testing and/or model selection naturally gives rise to

a mechanistic movement model, given by the particular version

of equation (2.1) that corresponds to the best fit model and

parameter values. This enables one to determine the space use

(i.e. home range) patterns that emerge from the model. We test

whether the patterns that emerge from the best model that

includes resource selection, topographical selection and territor-

ial interactions are a significantly better fit to the data than the

same model without the territorial interactions.

To do this, we constructed a simulation model for the bird

flocks, whose movements each step are determined by drawing

from the time-dependent probability distribution from equation

(2.1) with the best-fit parameter values found by the hypothesis test-

ing technique above. As each flock gathers in one particular place

each day and moves around the terrain for a total of about 11 h

30 min during the day, we started the simulated birds at the gather-

ing point and ran the simulation for 690 time steps, each step

representing t ¼ 1 min (giving 11 h 30 min in total), taking a note

of all the positions at which the flock landed after each step. We

repeated this 100 times, representing 100 days, giving 69 000 simu-

lated positions for each flock, from which we calculated home

ranges using the kernel density estimation (KDE) method. We also

ran identical simulations except where the model has

Ci(x, y, Pt
i ) ¼ 1, so that no territorial interactions were included.

To test which model performed better at predicting space use,

we compared the Kullback–Leibler (K–L) distance [47] between

each model’s KDE distribution and the KDE distribution for the

data. The K–L distance differs by a constant from 1/2 times the aver-

age Akaike information criterion (AIC) of a single sample from the

data’s KDE distribution (see [47] for details). Therefore, the differ-

ence in AIC (DAIC) for two different models of the same data

distribution can be thought of as twice the difference in K–L dis-

tance, by considering a single KDE distribution as a single data

sample. We have 11 flocks, so 11 KDE distributions. The DAIC is

twice the sum of the differences in K–L distance across these

flocks. We use this value to assess whether the resulting model is

better at predicting space use, as opposed to just movement choices,

than the model with no territorial interactions. To test whether the

models are a good fit to the data, we used a Pearson x2 test, treating

each 10� 10 m square as a single data bin. For this, we used the

positional data rather than the smoothed data.
3. Results
3.1. Framing existing models as coupled step selection

functions
3.1.1. Step selection and resource selection
Step selection functions are simply single examples of equation

(2.1) with the collective term Ci(x, y, Pt
i) equal to 1 [27,29,32,33].

In other words, we just consider one animal at a time, and how it
interacts with its environment, without attempting to use the

results to construct a mechanistic model of interacting animals.

Resource selection functions are similar, but the environment-

independent movement term fi(xjy, u0) is replaced with an

availability function, which can take whichever form the user

feels is appropriate for study (e.g. [28,36]).

3.1.2. Individual-based territory models
The selection of studies by Giuggioli et al. [9,48] and Potts

et al. [10,24] modelled territorial interactions using moving

agents on a square lattice. The initial model from [9] has

agents performing nearest neighbour random walks and

depositing scent as they move. The scent remains for a

finite time T*, the so-called active scent time, after which it is

no longer considered as ‘active’ by conspecifics. Each ani-

mal’s movement is restricted by the fact that it cannot move

into an area that contains active scent of a neighbour.

This can be framed as a CSSF where fi(xjy, u0) ¼ 1/4 if x

is the lattice site either immediately above, below, to the right

or to the left of y, and fi(xjy, u0) ¼ 0 otherwise. Additionally,

as this model does not include any environmental inter-

actions, we set Wi(x, y, E) ¼ 1. The term Pt
i(x) represents

the presence of scent at position x and time t, so that

Pt
i(x) ¼

T�
any animal j= i is at

position x at time t,
min {Pt�t

i (x)� t, 0} otherwise.

8><
>:

(3:1)

Then the collective interaction term is

Ci(x, y, Pt
i) ¼

1 ifPt
i(x) ¼ 0,

0 otherwise.

�
(3:2)

The CSSF formalism (equation (2.1)) gives a natural way of

incorporating environmental interactions into such territorial-

ity models, an aspect of this approach hitherto lacking, as

noted in [35].

3.1.3. Advection – diffusion territory models
The type of territorial models described in [8] provides several

other examples of CSSFs. We describe an individual-level

model in a one-dimensional interval [0, 1] that has as its

continuum limit the original advection–diffusion model of

[23]. To do this, we first set

fi(xjy) ¼ exp (� jx� yj/a)

2a
, (3:3)

where a is the average step length, and Wi(x, y, E) ¼ 1. This

means that the intrinsic movement of each agent (pack of

wolves) is a random walk with no correlation, and we are

ignoring the effects of the environment on movement.

There are two agents in the model, so i [ f0, 1g. The col-

lective action is mediated by scent deposition so that Pt
i(x)

represents the scent mark density of pack 1 2 i. Marking by

individual i occurs at a rate lþmPt
1�i(x), where m is typically

a monotonic increasing function, representing the tendency

of wolves to mark more heavily when conspecific marks

are present. Pt
i(x) is governed by the following equation:

Pt
i(x) ¼ (1� mt)Pt�t

i (x)|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}
scent decay

þ d(xi�1 � x)[lþmPt
1�i(x)]t|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

scent deposition

, (3:4)

where xi is the position of agent i at time t 2 t, and m is the

scent decay rate.
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Packs have a tendency to move back towards their home

range centre on encountering foreign scent. Assuming that

the home range centre of pack 0 is to the left of the study

area and pack 1 to the right, the collective interaction term

is given by

C0(x, y, Pt
0) ¼ þ I(x . y)t

D
a
� CPt�t

0 (x)

� �
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

rightward drift due
to conspecific scent

þ I(x � y)t
D
a
þ CPt�t

0 (x)

� �
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

leftward drift due
to conspecific scent

(3:5)

and

C1(x, y, Pt
1) ¼ I(x . y)t

D
a
þ CPt�t

1 (x)

� �
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

rightward drift due
to conspecific scent

þ I(x � y)t
D
a
� CPt�t

1 (x)

� �
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

leftward drift due
to conspecific scent

, (3:6)

where D and C are parameters, which can be determined by

model fitting, and I(X ) is an indicator function that is equal to

1 if X is true and 0 otherwise.

Now we move from an individual description to positional

probability density functions. Let u(x, t) (resp. v(x, t)) be

the probability distribution of pack 0 (resp. pack 1). For nota-

tional convenience, we rename the scent levels of packs 0 and

1 to p(x, t) and q(x, t), respectively. Then standard theory (e.g.

[8, ch. 2]) means that the limit as t! 0, a! 0 of u(x, t) is

governed by the following advection–diffusion equation:

@u
@t
¼ @2

@x2
[du(x, t)u(x, t)]|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

random
movement

� @

@x
[cu(x, t)u(x, t)]|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

directed
motion

, (3:7)

where the advection and diffusion functions (cu(x, t) and

du(x, t), respectively) are the following limits:

cu(x, t) ¼ lim
t!0

1

t

ð1

�1

(y� x)f0(xjy)C0(x, y, q)dy

and du(x, t) ¼ lim
t!0

1

t

ð1

�1

(y� x)2f0(xjy)C0(x, y, p)dy:

9>>>=
>>>;

(3:8)

This theory is built by constructing the master equation for u.

Implicit in the construction is the so-called ‘mean-field’

approximation, which assumes that the covariance between

the scent mark density and the position of the pack is (approxi-

mately) zero. A direct calculation shows that cu(x, t) ¼ Cq(x, t)
and du(x, t) ¼ D. The equation for v(x, t) is analogous, but with

f0, C0, cu, du and q replaced by f1, C1, cv, dv and p, respectively.

Therefore, cv(x, t) ¼2Cp(x, t) and dv(x, t) ¼ D.

The advection–diffusion equations for this system of

CSSFs are then

@u
@t
¼ D

@2u
@x2
� C

@

@x
[qu]

and
@v
@t
¼ D

@2v
@x2|fflffl{zfflffl}

random
movement

þ C
@

@x
[pv]|fflfflfflfflffl{zfflfflfflfflffl}

directed
motion

:

9>>>>>>=
>>>>>>;

(3:9)
Furthermore, the continuous-time limits of the scent marking

equations (3.4) are as follows [49, ch. 3]:

@p
@t
¼ u(lþmq)� mp

and
@q
@t
¼ v(lþmp)|fflfflfflfflfflffl{zfflfflfflfflfflffl}

scent
deposition

� mq|{z}
scent
decay

:

9>>>>>=
>>>>>;

(3:10)

Equations (3.9) and (3.10) form the system studied in [23].

This process can be generalized to derive advection–diffu-

sion equations describing territorial pattern formation in

two dimensions [8].

3.1.4. Alignment-and-attraction models
Equation (2.1) also reduces to a variety of collective motion

models other than territorial ones, including trail-following

ants [6] and collective patterns in animal populations through

alignment and attraction [4,37]. Here, we address one of these

modelling frameworks [4] with the others left to the elec-

tronic supplementary material.

To write the model from [4] as a CSSF, we first note that

each animal, i, has a fixed speed, si. Therefore, we set fi(xjy,

u0) ¼ dD(jx 2 yj 2 sit), where dD is the Dirac delta function.

Wi(x, y, E) ¼ 1 as there are no environmental interactions in

the model from [4]. All the other animals in the population

can influence animal i’s subsequent movement, so

Pt
i ¼ (y1, . . . , yi�1, yiþ1, . . . , yn, u1, . . . , ui�1, uiþ1, . . . , un),

where yj is the position of animal j at time t, having arrived

there on a bearing of uj.

The model incorporates attraction, alignment and repul-

sion. Repulsion occurs if there are other animals within

distance of rr from animal i, to ensure that animals do not col-

lide. If there is no repulsion, then animal i will align with any

others that are greater than a distance of rr, but less than a dis-

tance of ro, from i. They will also be attracted to animals j
such that ro � jyj 2 yij � ra (see [4] for details).

To aid in writing the interaction term, we let ur(Pt
i) be the

repulsion angle, which is the bearing given by the vector

vr ¼ �
X
j=i

(yj � yi)=jyj � yij|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
vector
from i to j

I(jyj � yij , rr)|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}
repulsion

radius

: (3:11)

We also define an alignment and attraction angle, ua(Pt
i),

which is the bearing given by the direction of

va ¼
X
j=i

(yj � yi)/jyj � yijI(ro � jyj � yij � ra)

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
attraction

þ
X
j=i

cos (ui)

sin (ui)

� �
I(rr � jyj � yij , ro)

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
alignment

: (3:12)

The interaction term from [4], section ‘Behavioural rules:

description’, is then

Ci(x, y,Pt
i)¼

SG(u�ur) if there is a j= i such that jyj�yij,rr,

SG(u�ua) if there is a j= i such that jyj�yij� ra

but no k= i such that jyk�yij,rr,
SG(u�u0) otherwise,

0
BBB@

(3:13)

where SG(c) is a spherical Gaussian.
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Figure 3. Space use predictions of bird flocks using a CSSF. In (a), the dots represent recorded positions of bird flocks, whereas the contours detail the space use
distributions that arise from a territorial- and environmental-interaction model that best fits the movement data (see Material and methods for details). The colours
of the contours for each flock correspond to those of both the positional data points and the text giving the flock names. (b) The predicted position distributions for
the Central flock with territorial interactions minus those without such interactions. Note that no fitting was performed between the model spatial distribution and
the bird positions. Instead, the distributions simply emerge from the model’s underlying movement and interaction processes.

Table 2. Fitting models both with and without territorial interactions to
data on bird flock movement. For each flock, the K – L distance between
the data’s KDE distribution and the model’s KDE distribution is given. For
all but two of the flocks, the model that includes territorial interactions
performs best, shown by a positive difference in column 4.

flock
K – L with
interactions

K – L no
interactions difference

Central 0.868 1.236 0.367

North 1.018 1.442 0.424

South Central 0.673 0.826 0.152

South West 1.020 1.317 0.297

Lake 0.902 1.063 0.161

W400 0.737 0.989 0.252

Cap II 3.527 3.377 20.150

Cap South 1.192 1.465 0.305

Ig-Cmp 0.779 1.013 0.234

Cap North 1.125 1.048 20.077

North East 0.967 1.038 0.071
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3.2. The example of Amazonian bird flocks
When we apply our technique to data on Amazonian birds,

there is no significant improvement in fit ( p ¼ 0.60) if we

model birds as having a tendency not to go into areas from

where they have heard conspecific bird calls in the past

(hypothesis (1) from the Material and methods section).

However, when flocks are modelled as being allowed to

move into neighbouring territories, but then having a ten-

dency to retreat in the direction of the gathering point

(hypothesis (2)), we observe a significant improvement in

fit ( p ¼ 0.022). If we assume that the territorial cues have a

finite lifetime (hypothesis (3)), the maximum-likelihood esti-

mator for T* is larger than the length of the time-series

data, suggesting that birds are able to remember these cues

for a very long time after they have been made.

To demonstrate the space use patterns that arise from these

results, we constructed simulations using the gathering point

attraction model, used to test hypothesis (2), with the best fit

parameters of T* ¼1 and k ¼ 0.0597 (figure 3). For nine of

the 11 flocks, the resulting KDE distributions are closer to

those of the data than the KDE distributions without territorial

interactions (table 2). Furthermore, the resulting difference in

AIC (DAIC) between the two models is DAIC ¼ 4.07, giving

reasonable evidence to suggest that the model including terri-

torial interactions is better at predicting space use patterns than

that without. This is demonstrated pictorially in figure 3b,

which shows that the model including territorial interactions

is more highly peaked at the centre and includes a lower

density of outliers.

Of the two flocks that are not well modelled by incorpor-

ating territorial interactions, for Cap North we have no data

on adjacent flocks (figure 3a) so the inability of the model

to detect territorial interactions is unsurprising. Cap II, on

the other hand, is located in the most degraded area of all

flocks in the study. Subsequent observations of the study

area suggest that it did not persist over time, as key species

either abandoned the area or died. Therefore, the territory

could well be in the process of moving or degrading during
the study period, mechanisms that are likely to be key drivers

in shaping the space use, but which are absent from our

current model.

For all of the flocks except Cap II, there was insuffi-

cient evidence to suggest that the data did not come from

the model distribution that included territorial interactions

( p , 0.0001 for Cap II, p . 0.999 for the others). The same

test with the model that excluded territorial interactions

suggested that there was only sufficient evidence to reject

the hypothesis that the data came from the model for Cap

II and Central ( p , 0.0001 for Cap II and Central, p . 0.999

for the others). Therefore, we have significantly improved

the absolute fit of the Central data by including territorial
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interactions. Central is the only flock for which we have data

on all surrounding flocks so it is precisely the flock for which

one would most expect to see improvement of absolute fit.
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4. Discussion
We have constructed a general model for the effects on

movement of both animal–habitat and between-animal inter-

actions. We have demonstrated how the model encompasses,

as special cases, a variety of disparate collective motion

models as well as resource and step selection functions. By fit-

ting a version of our model to data on bird flock locations, we

have shown how it can be used to determine and quantify

the nature of territorial interactions, as well as modelling

simultaneously the effects of both conspecifics and the environ-

ment on movement processes. As we framed the system as a

one-step Markovian model of both the animals and their

environment, our framework allows for relatively simple cali-

bration of models, which makes the process computationally

fast. This contrasts with methods that fit the movement path

as a whole, such as state-space models, which can be difficult

to fit [50].

Though we have focused on territorial modelling, so

not given an exhaustive demonstration of how our frame-

work might be reducible to all collective behaviour models in

the literature, we display a variety of different examples,

encompassing both direct and mediated interactions, both con-

specific attraction and avoidance processes. These demonstrate

the possible wide applicability of our approach and potential to

frame many more models as CSSFs. Encompassing competing

models of collective behaviour under this unifying framework

will make future comparisons easier, aided by the methods

given here for fitting CSSFs to data. Furthermore, it will

enable transference of techniques and results between the

hitherto disparate fields of collective motion, resource selection

and mechanistic territorial modelling. To give one example,

research into ungulate behaviour often looks at the effects of

the environment on movement but ignores herding inter-

actions (e.g. [27]) or looks at herding behaviour but ignores

the resource aspect (e.g. [51]). Our framework links these two

ideas so will help future researchers build and validate

models that account for both.

By applying our model to movement patterns of bird

flocks, we were able to test hypotheses about the mechanisms

behind the interaction processes. Previous studies of mechan-

isms underlying territorial patterns in populations of scent-

marking animals postulated that they will avoid areas that

have recently been claimed by others as their territory [10].

Here, we have shown that the territorial interaction mechan-

ism in bird flocks is quite different. There is no evidence to

suggest that they tend to avoid places that have previously

been claimed as other flocks’ territories. However, after visit-

ing the outskirts of neighbouring territories, they will change

their movement processes to include a tendency to retreat

back inside their territory. These visitations explain the

observed slightly overlapping utilization distributions in the

birds’ spatial patterns (figure 3).

Our framework can also be used to build predictive,

mechanistic models showing how utilization distributions

arise from the underlying movement and interaction pro-

cesses. To demonstrate this, we used stochastic simulations

of the best fit system of CSSFs for the bird data. Recently,
step selection functions have been used to construct determi-

nistic master equation [43] and PDE models [31], from which

the resulting spatial distributions can be analysed using well-

studied mathematical tools (e.g. [8]). While the coupling term

in our framework makes such analysis significantly more

complicated than for ordinary step selection functions, deter-

ministic mathematical formulations would ultimately enable

concrete conclusions to be reached without the need for exten-

sive, time-consuming computer simulations. We therefore

hope, in future work, to begin a programme of analysing

coupled step selection models mathematically.

Though mechanistic models have previously been pro-

posed to explain space use patterns by examining movement,

territorial interactions and environmental features [22], those

models fit the emergent space use distribution to relocation

data, whereas our model is directly fitted to the movement tra-

jectory itself, enabling the space use distribution to arise with

no additional fitting. The advantage of this is twofold. First,

there is no need to throw away data in order to make sure

each data point is an independent sample of the spatial distri-

bution from the others (see [8] for details of, and rationale

behind, this procedure). Therefore, we can use the complete

movement trajectory, containing much more information.

Second, fitting the model to the underlying movement

choices ensures that the parameter values used to construct

the model arise from the movement and interaction processes

rather than the emergent patterns. This means that we can

assess to what extent these processes predict space use, and

where they fail. For example, in the data studied here, the

space use of two flocks (Cap II and Cap North) were not pre-

dicted by the territorial interaction model as well as by the

no-interaction model, unlike the other nine flocks (table 2).

Therefore, we can postulate hypotheses about what other

processes may be required to predict space use in these

instances. On the other hand, fitting directly to the space

use distribution implicitly assumes that the mechanistic

model describes well all aspects of movement that give rise

to the spatial patterns. Consequently, this procedure may

cause inaccurate inferences to be made about the parameter

values of the underlying processes. In other words, our

approach is more cautious, therefore less likely to lead to incor-

rect results and more likely to reveal the extent to which certain

processes fail to predict accurately the spatial patterns.

As an alternative to mathematical models of space use,

simulations of individual-based models have also been used

to attempt to understand animal movement decisions and

emergent spatial patterns [52]. Typically, they take a pattern-

oriented approach [53,54], beginning by including as many

aspects of the animal’s movement and interaction processes

as are believed to cause the observed patterns. If the empirical

patterns, also called summary statistics, are observed in the

model output then the model is simplified to try to understand

exactly which of the processes are causing the patterns to

emerge. The aim of this approach is to find models that repli-

cate as many of the summary statistics observed in the data

as possible, with as few model parameters.

Our approach, on the other hand, is process-based in nature

[55], seeking to build an individual-based mechanistic model

by testing hypotheses about the underlying processes one at

a time. The key difference is that we test the model par-

ameters against the data for validity on the same level of

description at which the model is constructed. The pattern-

oriented approach tests the model parameters at a different
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level of description: that of the summary statistics. However,

this is not sufficient for making inferences about the par-

ameter values put into the model. Though analysis of a

mechanistic model, individual based or analytic, shows that

process A implies pattern B, showing that pattern B replicates

the data does not imply that the underlying mechanism is

actually process A. Therefore, it is not possible, purely

using a pattern-oriented approach, to make solidly grounded

inferences about the nature of the mechanisms that have gone

into construction of the model. In our approach, we circum-

vent this issue by testing and parametrizing the model’s

mechanisms on the level of description at which they are

constructed, then observing the patterns as an emergent fea-

ture of the model, which can in turn be compared with the

patterns from data.

Recent developments in the collective behaviour literature

provide many good examples of process-based modelling

and model parametrization [5,12–17,19]. However, very few

examine the emergent features of these data-parametrized

models and test whether they accurately replicate the popu-

lation-level patterns seen in the data, as we do here. That

said, there are exceptions, for example [19,56,57], and these

models could, in principle, be used in conjunction with theor-

etical mechanistic models of pattern formation, such as [37,58],

to provide a full story. If they were to be framed under a single

overarching methodological framework, such as the CSSFs

proposed here, then this would aid the unification of process-

based model construction and theoretical process-to-pattern

analysis that has recently been sought [11].

Though our model was significantly better at predicting

space use than the model free of territorial interactions, it is

clear from figure 3a that our model does not capture all

aspects of the birds’ spatial patterns. However, the strength

of our approach is that we can readily add further
behavioural features one at a time, testing the efficacy of

each using the techniques detailed here. For example, the

birds are known to have direct territorial conflicts, which

affect where they move in subsequent days and weeks.

Also, the movement is driven by intra-flock interactions,

with one particular species, the cinereous antshrike (Thamno-
manes caesius), playing the main role in maintaining

cohesiveness. By using our techniques to test the effect of

such behavioural phenomena on movement and space use,

we can move towards building truly accurate, predictive

models linking movement processes, conspecific interactions

and collective behaviour to the emergent space use

distributions.
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