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Phycodnaviruses have a significant role in modulating the dynamics of phytoplankton, thereby
influencing community structure and succession, nutrient cycles and potentially atmospheric
composition because phytoplankton fix about half the carbon dioxide (CO2) on the planet, and some
algae release dimethylsulphoniopropionate when lysed by viruses. Despite their ecological
importance and widespread distribution, relatively little is known about the evolutionary history,
phylogenetic relationships and phylodynamics of the Phycodnaviruses from freshwater environ-
ments. Herein we provide novel data on Phycodnaviruses from the largest river system on earth—
the Amazon Basin—that were compared with samples from different aquatic systems from several
places around the world. Based on phylogenetic inference using DNA polymerase (pol) sequences
we show the presence of distinct populations of Phycodnaviridae. Preliminary coarse-grained
phylodynamics and phylogeographic inferences revealed a complex dynamics characterized by
long-term fluctuations in viral population sizes, with a remarkable worldwide reduction of the
effective population around 400 thousand years before the present (KYBP), followed by a recovery
near to the present time. Moreover, we present evidence for significant viral gene flow between
freshwater environments, but crucially almost none between freshwater and marine environments.
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Introduction

The family Phycodnaviridae comprises six genera
that include several large and diverse icosahedral
double-stranded DNA viruses, with genomes ran-
ging from 160 kbp to 560 kbp (Van Etten et al., 2002;
Dunigan et al., 2006; Wilson et al., 2008), which
infect a wide spectrum of eukaryotic algae. Phyco-
dnaviruses have a significant role in modulating the
dynamics of phytoplankton, thereby influencing the
community structure and succession (Castberg et al.,
2001; Brussaard, 2004), nutrient cycles (Gobler
et al., 1997; Wilhelm and Suttle, 1999; Rusch
et al., 2007) and potentially atmospheric composi-
tion. This is because phytoplankton fix about half of
the CO2 on the planet (Sabine et al., 2004; Denman
et al., 2007; Houghton, 2007), and some algae release
dimethylsulphoniopropionate when lysed by
viruses (Liss et al., 1997; Hill et al., 1998; Malin
et al., 1998). Despite their ecological importance and

widespread distribution (Cottrell and Suttle 1991;
Clasen and Suttle, 2009), relatively little is known
about the evolutionary history and phylogenetic
relationships among the Phycodnaviruses (Chen and
Suttle, 1996; Short and Suttle, 2002; Wilson et al.,
2006; Larsen et al., 2008) particularly as they pertain
to freshwater environments (Short and Short, 2008;
Clasen and Suttle, 2009). Moreover, it has been
postulated that, based on molecular phylogenies,
viruses and other microorganisms have experienced
a limited number of marine–freshwater transitions
during their evolution (Logares et al., 2009).

The Phycodnaviridae family was recognized
based on a group of viruses that infect endosymbio-
tic Chlorella-like algae (Van Etten and Ghabrial,
1991), and is now known to be part of the large
nuclear and cytoplasmic DNA virus group.These
viruses encode several conserved proteins perform-
ing most key life-cycle processes. The choice for
using the B-family DNA polymerase as a conserved
marker for the evolutionary history of nuclear and
cytoplasmic DNAvirus group, and its use as a target
in related studies, lay on the fact that this protein
contains a polymerase domain that is highly
conserved at the amino acid level, and less con-
served at the nucleotide level, allowing for deeper
phylogenetic inference (Zhang and Suttle, 1994).
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The Amazon is one of the most ancient freshwater
environments, raising the issue if it could function
as a reservoir from which freshwater viruses could
disperse to other environments. Despite the magni-
tude of the Amazonian river system little is known
in general about the microbes that inhabit these
waters (Benner et al., 1995; Hungria et al., 2005;
Rejas et al., 2005; Hewson et al., 2006). Particularly,
there is a lack of studies on Phycodnaviruses in
tropical freshwater environments in general and in
the Amazonian river system in particular. This
study constitutes the first report on the composition
of Phycodnaviruses of tropical waters in South
America from the Amazon Basin, which is the
source of 20% of the free-flowing freshwater on
Earth, as well as being one of the world’s most
important ecosystems in terms of biodiversity.

Materials and methods

Study sites
The two main rivers of the Amazon Basin are the
Solimões and the Negro, which, after meeting near
the city of Manaus, form the great Amazon River.
Despite being geographically close, both rivers are
physically, chemically and biologically distinct. The
Solimões River is considered as a white-water river,
having brownish turbid waters, rich in particulate
suspension material and pH ranging from 6.2 to 7.2
(Sioli, 1975a, 1975b). The Negro River, on the
contrary, is considered a black-water one. The dark
brown color of the water results from the high
concentration of humic substances in it, originating
from the decomposition of high quantities of organic
matter present in the river. Its acidic waters (pH
from 3.8 to 4.9) have low concentrations of dis-
solved salts, reflecting the chemical poverty of the
soils the waters pass over (Sioli, 1975a, 1975b). Both
the Negro River, and its tributary, the Cuieiras River,
share the same black-water-river characteristics.

However, the Cuieiras River flows over an area with
almost no human impact.

Sample collection and viral concentration
Freshwater samples were collected from the Soli-
mões (n¼ 3), Negro (n¼ 4) and Cuieiras (n¼ 1)
Rivers (Table 1), during the flood of 2007 (July),
using a submersible pump. The water was trans-
ported to the laboratory in 20-l polypropylene
carboys, protected from light and heat and pro-
cessed within 2–3h. A volume of 10–100 l of water
were pressure filtered through 142mm diameter
cellulose fiber paper filter (Millipore, Barueri,
Brazil), 142mm diameter 1.2 mm pore size glass
fiber (Millipore) and 142mm diameter 0.45 mm pore
size PVDF (Millipore) membrane filters connected
in series. The remaining particulate material was
concentratedB1000-fold by ultrafiltration through a
30-kDa-cutoff tangential flow cartridge (Millipore)
(Suttle et al., 1991) followed by ultracentrifugation
at 100 000 g for 2 h in a swinging bucket rotor
(Mehnert and Stewien, 1993). Pellets were resus-
pended in supernatant and stored at 4 1C in the dark
until the DNA was extracted.

Phycodnaviruses DNA amplification
After treatment with Vertrel XF (DuPont, Barueri,
Brazil) to remove lipids and proteins (Queiroz et al.,
2001), DNA from each concentrate was extracted
using the PowerSoil DNA kit (MoBio, Cotia, Brazil)
and stored at �20 1C until use. Phycodnavirus DNA
polymerase (pol) gene fragments were amplified in
two PCR rounds with the degenerate primers, AVS1/
AVS2 and AVS1/POL (Chen and Suttle, 1995), using
a Hybaid PCR Express thermocycler (Ashford, UK).
In the first round 2ml of template DNA were added
to a mixture of 1U of Platinum Taq DNA poly-
merase (Invitrogen, Burlington, Canada), 0.2mM of
each deoxyribonucleotide triphosphate, 10 pmol
of AVS1, 60pmol of AVS2, 1.5mM MgCl2,

Table 1 Details of samples used in this study

Sample Date 2007 Location Coordinates Depth
(m)

Current
(kmh�1)

Water
temperature

(1C)

pH DO
(mg l�1)

Volume (l)

Initial Final

SOLa 07/18 Solimões River—
Ilha da

Machantaria

031160S 601020W 1.5 5.7 27.8 6.5 2.36 10 0.01

SOLb 07/23 1.5 5.6 27.9 6.2 2.64 20 0.02
SOLc 07/26 1.5 5.9 27.9 6.0 2.84 20 0.02
CUIa 07/24 Cuieiras River—

at the source
021460S 601270W 1.5 0 27.8 4.0 3.2 80 0.08

NEGa 07/17 Negro River—
Tatu

031030S 601180W 1.5 3.5 28.7 4.7 3.12 100 0.10

NEGb 07/20 1.5 4.6 28.3 4.5 3.12 100 0.10
NEGc 07/25 1.5 3 28.6 4.2 3.23 100 0.10
NEGd 07/19 Negro River—

Educandos
031030S 601010W 1.5 0 28.7 4.8 2.6 40 0.04

Abbreviation: DO, dissolved oxygen.
a, b, c, d indicate the different samples from the same river.

Phylodynamics and movement of Phycodnaviruses
MV Gimenes et al

238

The ISME Journal



manufacturer-provided PCR reaction buffer and
water, to a final volume of 50ml. In the negative
and positive control reactions, template DNA was
substituted for water and Micromonas pusilla virus
SP-1 (MpV-SP1) DNA, respectively. PCR conditions
were 90-s initial denaturation at 95 1C, followed by
40 cycles of 45-s denaturation at 95 1C, 45-s anneal-
ing at 45 1C and 45-s extension at 72 1C, and plus a
final 10-min extension.

A pool of four PCR reactions from each
sample (the total volume of 200 ml) was electro-
phoresed with 6� loading buffer on a 1.5% agarose
gel, at 90V for 60min, in 0.5� Tris-Borate-EDTA
buffer. The ethidium bromide-stained gel was
visualized with ultrviolet for o5 s using an Alpha-
Imager 3400 (AlphaInnotech, Toronto, Canada). The
B700 bp bands were excised, and then purified
using a MinElute PCR Purification kit (Qiagen,
Toronto, Canada) before elution in 50ml of water.

A nested second-round PCR was performed, to
confirm that the correct target was amplified. This
was done by adding 2 ml of purified DNA to a
mixture of 0.625U of Platinum Taq DNA polymer-
ase, 0.16mM of each deoxyribonucleotide tripho-
sphate, 30 pmol of both AVS1 and POL primers,
1.5mM MgCl2 and manufacturer-provided PCR
reaction buffer and water to a final volume of
25 ml. PCR conditions were a 90-s initial denatura-
tion, followed by 30 cycles of 30-s denaturation at
95 1C, 45-s annealing at 50 1C and 60-s extension at
72 1C, plus a final 10-min extension at 72 1C.
Negative and positive controls were the same as in
the first round amplification. A subsample of 100 ml
from the B500 bp PCR products of each sample
(a pool of four reactions) was electrophoresed,
purified, eluted and stored as indicated above.

Cloning and sequencing
Purified 500 bp pol fragments were cloned into
pCR4-TOPO vectors (Invitrogen), Escherichia coli
strain TOP-10 chemocompetent cells were trans-
formed, and plated on Luria-Bertani/agar medium
selective for ampicillin (100mgml�1), according
to the manufacturer’s protocol. Bacterial colonies
containing pol inserts were randomly picked
and inoculated in 80 ml of Luria-Bertani
with ampicillin (100 mgml�1) in 96-well plates.
After a 12-h incubation period at 37 1C, 40 ml of
sterile 60% glycerol were added to each well. Plates
were incubated for an additional hour at 37 1C
and stored at �80 1C until sent to the Genome
Québec Innovation Centre at McGill University for
sequencing on a 3730xl DNA Analyzer (Applied
Biosystems, Carlsbad, CA, USA).

Phylodynamics and phylogeographic analysis
Sequence alignment. A data set of B-family (a-like)
Phycodnavirus DNA pol sequences from cultures
and environmental samples, including the ones
from this study, was aligned by introducing gaps

respecting the proper coding frame with Clustal X
(Thompson et al., 1997) and Codon Align (http://
www.sinauer.com/hall/2e/).

Phylogenetic analysis. At first, a global maximum
likelihood (ML) tree of pol sequences was con-
structed from an alignment of 244 inferred amino-
acids from 638 taxa, including environmental
sequences (Supplementary information 1) and
representatives from all Phycodnaviridae genera:
Paramecium bursaria Chlorella virus—PBCV (Chlor-
ovirus), Chrysochromulina brevifilum virus—CbV
and Phaeocystis globosa virus—PgV (Prymnesiovirus),
Ectocarpus siliculosus virus—EsV (Phaeovirus),
Emiliania huxleyi virus—EhV (Coccolithovirus),
Heterosigma akashiwo virus—HaV1 (Raphidovirus),
M. pusilla virus—MpV (Prasinovirus) and Ostreococ-
cus virus—OsV and Bathycoccus virus—BpV (unclas-
sified) (Supplementary information 2). To characterize
and better define deep associations among Phycodna-
viruses, a diverse set of taxa were used as outgroups
(HaV1, EhV, EsV, PgV, CbV and PBCV) during protein-
based phylogenetic inferences.

Protein trees were recovered with PhyML v2.4.4
(Guindon and Gascuel, 2003) using the JTT model of
aminoacid substitution, with the following para-
meters optimized from the data: (i) proportion of
invariable sites, (ii) tree topology and (iii) shape
parameter (a) of the g-distributed substitution rates.
Additionally, in a second analysis using DNA
sequences, the outgroups were removed to better
estimate the associations among closely related
groups by reducing saturation at degenerate sites
introduced by highly divergent sequences. DNA-
based phylogenies for Phycodnaviruses alone were
obtained from the analysis of complete data sets
using BEAST v.1.4.8 (Drummond and Rambaut,
2007; see details below). Maximum clade credibility
trees summarizing the posterior probability of nodes
on the phylogeny were obtained from trees sampled
at stationary during the Markov Chain Monte Carlo
(MCMC) runs.

Phylodynamic analysis. Based on the coalescent
theory of Kingman (1982), intra-species gene genea-
logies have been extensively used to infer various
demographic parameters for a diverse set of organ-
isms (Page and Holmes, 1998), allowing the time
and mode of evolution of exogenous viruses
(Zanotto et al. 1996, Grenfell et al., 2004, Pybus
and Rambaut, 2009), endogenous viruses (Romano
et al., 2007) and even complex metazoa (Campos
et al., 2010) to be understood. To infer gene
genealogies closely related pol sequences were
subdivided into demes. We considered demes as
discrete subpopulation of viruses with definable
genetic relationships. As not much is known about
any Phycodnavirus population structure and nor
how comprehensive our samples would be of any of
the viral ‘species’ we sampled from, we partitioned
our sequences into demes (that is, subpopulations)
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following three criteria: (i) they had to belong to a
monophyletic group (that is, they had to share a
common relatively recent ancestral node), (ii) have
17 or more samples, which implies a probability of
0.0074 of adding any new sequence that would alter
the time to the most recent common ancestor (that
is, adding 136 new sequences per deme, Felsenstein,
1993) and (iii) not show genetic divergence within
the monophyletic group42%. The average pairwise
genetic distance among taxa from apical monophy-
letic groups found in the global tree was calculated
from the ML estimates of the number of substitu-
tions per site obtained with the DNADIST program
version 3.6, available in the PHYLIP package
(Felsenstein, 1993).

Demes were analyzed using a Bayesian MCMC
approach implemented in BEAST. Bayesian priors
for the mutation rate per site per year for Phycodna-
viruses were approximated using the formula:
log(rate)¼ 0.95 log (genome size)þ 2.67 (r2¼ 0.97),
obtained by interpolating the genome size ranges for
Phycodnaviruses (160–560kbp) into the per-site
mutation rate versus genome size curve for organ-
isms ranging from viroids to higher eukaryotes (Gago
et al., 2009, data available from authors upon
request). A relaxed (uncorrelated lognormal) mole-
cular clock, with a normal prior distribution of
mean¼ 1.4E�8 s/s/y (substitutions per site per year)
and s.d.¼ 2.34E�7 s/s/y was used, as dates of
sampling would be uninformative for this time
scale. This rate obtained by interpolation agrees
with rates of substitution per site per year for
double-stranded DNA viruses (Duffy et al., 2008),
such as Herpes virus type 1, with a rate of 1.8E-8 s/s/y
(Drake and Hwang, 2005) and a genome size within
the same order of magnitude of the Phycodnavirus.
Therefore, we believe that the prior distribution we
used would include realistic values of the rate of
change per site per year. The behavior of the
Phycodnavirus population size through time was
inferred using virus sequences and a prior distribu-
tion for the mutation rate. This is because, based on
phylogenies of Phycodnaviruses sampled during the
MCMC, BEAST infers the population size parameter
based on the number of cladogenetic events (that is,
nodes or bifurcation events along the tree from the
tips back to the root) to estimate the joint parameter
(Ne� g) that is, effective population size (Ne) times
the generation time in years (g). Nevertheless, from
our data or prior knowledge of our system, we do not
have ways to disentangle the actual values of
effective population size from generation time, but
merely report their joint behavior in time, as shown
in Bayesian skyline plots.

To be as conservative as possible an uncon-
strained Bayesian skyline coalescent prior was used
under the best-fit model of nucleotide substitution
(HKYþGþ I, Shapiro et al., 2006). To improve the
MCMC search operator values were set to a function
of the number of taxa in each group. After optimiz-
ing the values of the MCMC operators during

preliminary runs, up to 10 additional MCMC runs
individually, consisting of 20 million generations,
were done to obtain convergence of parameter
estimates, indicated by values of effective sampling
sizes above 200. In all cases the convergence of
parameters during the MCMC was inspected with
Tracer v.1.4 (Drummond and Rambaut, 2007), with
uncertainties depicted as 95% high probability
density (HPD) intervals. To provide an independent
assessment of the robustness of our analysis of
evolutionary dynamics, the time to the most recent
common ancestor of each data set was also esti-
mated using the Path-O-Gen software (available at
http://tree.bio.ed.ac.uk/software/pathogen/), which
uses a linear regression of root-to-tip genetic
distances against sampling time, based on the ML
phylogenies described above.

Phycodnaviruses movement among aquatic environ-
ments. The BayesTraits software (Pagel and
Meade, 2004) was used to derive posterior distribu-
tions and ML estimates of values for rates of change
among traits, which were assumed as posterior
probability estimates of both the rates of movement
(that is, migration) among the three environments
(riverine, lacustrine and marine) and the posterior
probability of the state at the root of the trees (that is,
origin of the viruses). Analyses were performed
using 10 000 trees sampled after the MCMC reached
stationarity (usually after 20 million states), and by
coding each taxa as discrete multistate traits repre-
senting their environmental sources (‘river’¼R,
‘lake’¼L and ‘sea’¼S). Several freshwater samples
could not be defined as either R or L; therefore the
ambiguity character coding RL (that is, either ‘river’
or ‘lake’) was used instead (Pagel and Meade, 2004).
Missing traits were coded as hyphens. To improve
the convergence of estimates, at least 100 attempts
in finding the likelihood for each tree with Bayes-
Trait were used.

Results

Sequences obtained from the eight water samples
collected in this study yielded 65 and 39 Phycodna-
virus pol sequences from the Solimões and Cuieiras
Rivers, respectively, providing the first data on
Phycodnaviruses from tropical rivers. These se-
quence data have been submitted to the GenBank
database under accession numbers HQ424349–
HQ424430. This data set allowed us to do the first
comparison between riverine Phycodnaviruses
clones from both hemispheres and from temperate
and tropical environments.

Molecular characterization of Amazonian
Phycodnaviruses
No Phycodnavirus amplicons were obtained
from the Negro River samples. The lack of
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Phycodnaviruses in the Negro River could be
because of naturally occurring conditions because
we did observe phages by electron microscopy but
not Phycodnaviruses (data not shown). It is likely
that these viruses were either missing at the spot or
below the level of detection of our method. Never-
theless, DNAwas isolated and sequences from other
viruses could be amplified from these samples (data
not shown). The physical and chemical conditions
of these waters were very similar to those found in
the Cuieiras River, from where Phycodnavirus
amplicons were obtained. We argue that, possibly,
the unique conditions of the river were responsible
for the lack of viral detection, assuming that there
was no unanticipated methodological problem spe-
cific to Phycodnaviruses at those particular sam-
pling localities. All 104 Amazonian sequences were
aligned to 550 pol sequences from environmental
samples, and to sequences from cultured isolates, to
create a 638-taxa data set. Phylogenetic analysis
with both DNA and inferred amino acid sequences
yielded trees that were similar to those inferred in
previous studies (Larsen et al., 2008; Short and
Short, 2008; Clasen and Suttle, 2009, Figure 1). Our
choice of outgroups for the phylogenetic analysis
(Figure 1) was justified as these taxa were more
divergent than all Phycodnaviruses we sequences or
used as references, in line with previous studies

(Short and Suttle, 2003; Larsen et al., 2008; Short
and Short, 2008; Clasen and Suttle, 2009). Further-
more, to minimize the impact of saturation at the
degenerate coding sites at the DNA level and to
properly depict the divergence among the more
recently diverged ingroup we excluded the diver-
gent outgroups (HaV1, EhV, EsV, PgV, CbV and
PBCV). Nevertheless, our phylogenies revealed
highly divergent monophyletic groups showing
intense cladogenesis near the tips of the tree
branches that are consistent with demographic
expansions of closely related populations (Figure 2).
These monophyletic groups were identified as
demes (shown as yellow sectors in the tree) for the
purpose of subsequent demographic studies. The
branching pattern on the tree also supports a distant
relationship between Phycodnavirus clone demes
from freshwater and marine lineages (Figure 2).

Population dynamics of Phycodnaviruses
Population size estimates shown in the Bayesian
skyline plot for all Phycodnaviruses (Figure 3)
were calculated as the effective population times
the generation time (Ne� g). There was a signi-
ficant reduction in Ne� g and the 95% HPD reached
a nadir between 500 and 300 thousand years
before present (KYBP), suggesting a complex

Figure 1 ML tree of Phycodnaviruses based on amino-acid sequences inferred from DNA pol sequences. Nodes marked in orange
contain marine sequences, nodes marked in light blue contain sequences from lakes and rivers, nodes marked in green contain sequences
from lakes and nodes marked in dark blue contain sequences from rivers.

Phylodynamics and movement of Phycodnaviruses
MV Gimenes et al

241

The ISME Journal



fluctuating dynamics of Phycodnaviruses over a
large time scale. The data also provided evidence
of a considerable increase in the number of
lineages after a bottleneck around 300 KYBP,
followed by a plateau around 100 KYBP (Figure 3).
This agrees with the signature observed near
the present (Figure 4). Moreover, there were no
obvious differences in population sizes of demes
from the Cuieiras and Solimões Rivers compared
with other localities. Deme 2 (from the Chadfield
reservoir and the South Platte River) and Deme 4
(from the Solimões River) did not show the
population reduction about 300 000 years ago
observed elsewhere. Rather, the Solimões River
kept a relatively constant size as indicated by a
stable Ne� g. Moreover, we noticed that Deme 2 was
the only population to increase throughout that
period.

Movement of Phycodnaviruses among water
environments
To evaluate the apparent restriction of gene flow
among Phycodnaviruses, the likelihood method in
BayesTraits was used to estimate the lineage
exchange among aquatic environments. Results
indicated significant genetic exchange among rivers
and lakes, but exchange rates between marine and
fresh waters were very low, ranging from 100 to
10 000-fold less (Figure 5). Significant differences
among rates were indicated by a lack of overlap
among the 95% HPD estimates, rejecting the
hypothesis of random exchange (panmixis) of
Phycodnaviruses among marine and fresh waters,
and providing evidence for restricted gene flow.
Because exchange values between rivers and lakes
were the highest, but within the same order of
magnitude, we evaluated how the ratio varied

Figure 2 ML tree of Phycodnavirus DNA pol inferred amino acid sequences. Nodes are identified by their origin as marine (orange),
riverine (dark blue), lacustrine (green) and fresh water (light blue), with sequences from both rivers and lakes. Demes (yellow) are
identified by numbers from 1 to 9. Demes 1and 2—samples from the Chatfield Reservoir (CO, USA) and the South Platte River (CO, USA);
Deme 3—samples from the Chatfield Reservoir, the South Platte River and Lake Ontario (ON, Canada); Deme 4—samples from the
Solimões River (AM, Brazil); Deme 5—samples from the South Platte River; Deme 6—samples from the Cuieiras River (AM, Brazil);
Demes 7 and 9—samples from Lake Ontario and Deme 8—samples from Lake Ontario and Crawford Lake (ON, Canada).
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depending on the tree used for the estimate. Joint
estimates of rates obtained with BayesTraits from a
sample of trees visited by the MCMC method
indicated that the ratio was robust to values of gene

flux from river to lake, mostly larger than from lake
to river (Figure 6). That happened irrespective of the
rates co-estimated for each tree that was summar-
ized by the line with a high correlation coefficient
(r2¼ 0.99) rising above the diagonal. Consequently,
this result supports the idea of further asymmetries
in Phycodnavirus gene flow among freshwater
systems, possibly with greater influx of viruses from
‘rivers’ into ‘lakes’ than the other way around. An
attempt to infer the root position on MCMC trees

Figure 3 Bayesian skyline plot of all Phycodnaviruses included
in this study analyzed together showing the overall dynamics
over the last 1.5 million years, during the Quaternary period. The
95% HPD (thin gray lines) are shown as around the mean (thick
black line).

Figure 4 Overlay of Bayesian skyline plot of all Phycodna-
viruses’ demes summarizing their individual dynamics over the
last 300 KYBP. Several demographic signatures show a consider-
able increase in the number of lineages around 130 KYBP possibly
during the warm Eemian interglacial period, reaching a plateau or
reduction near the present. Demes 1and 2—Chatfield Reservoir
(USA) and the South Platte River (USA); Deme 3—Chatfield
Reservoir (USA), the South Platte River (USA) and Lake Ontario
(Canada); Deme 4—Solimões River (Brazil); Deme 5—South Platte
River (Canada); Deme 6—Cuieiras River (Brazil); Demes 7 and 9—
Lake Ontario (Canada) and Deme 8—Lake Ontario (Canada) and
Crawford Lake (Canada).

Figure 5 Posterior probability and standard 95% HPD in
decreasing order show Phycodnavirus’ migration among aquatic
environments as the instantaneous rates of change.

Figure 6 Posterior probability of joint estimates of qRL (indicat-
ing rate of movement of Phycodnaviruses from river to lake) and
qLR (movement from lake to river) obtained with BayesTraits from
trees sampled at stationary during MCMC runs. The data indicate
that qRL is larger than qLR for most estimates and therefore there
appear to be more movement of Phycodnavirus from rivers to
lakes.
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showed higher probabilities for a marine origin (S)
of Phycodnaviruses, although large overlapping
95% HPD values for the alternative environments
(R, L) indicate that the root habitat is unresolved
(data not shown).

Discussion

Evolutionary dynamics of Phycodnaviruses
The phylogenetic trees of DNA pol sequences
indicated that all samples studied, including those
from the Amazon, belong to Group C Phycodna-
viruses (Larsen et al., 2008), which are found in a
wide range of marine and freshwater environments.
The phylodynamics of DNA pol sequences was
characterized by a complex signature of fluctuating
dynamics. It depicted a remarkable reduction of the
effective population size (Ne� g) around 400 KYBP,
suggestive of a genetic diversity bottleneck with
small 95% HPD (Figure 3), indicating a reduction in
cladogenetic events before the recent burst of
lineages on most demes. We argue that sampling
biases alone would not explain this effect. Crucially,
increased sampling would not only reduce even
further the likelihood of finding a new older root for
any particular deme (Felsenstein, 2004), but also
magnify the recent growth signal. Moreover, a
similar near-present expansion was observed inde-
pendently in all fresh- and salt-water systems.
Therefore, assuming that the pruning of lineages
causing the Ne� g reduction we observed is not due
to sampling, it could be explained, to some extent,
by a boom and bust process (Ferguson et al., 1999),
which causes older lineages to die out within demes
(Zanotto et al., 1996). Notably, fluctuations in viral
effective sizes may have an important role in
controlling the succession dynamics of algal popu-
lations, causing abrupt bloom termination (Bratbak
et al., 1993; Jacquet et al., 2002). This is part of the
well-known boom and bust dynamics of host algal
population (that is, ‘kill the winner’ hypothesis—
Thingstad, 2000). In addition, other non-biotic
factors could also have had an impact on the overall
dynamics we observe.

For example, the gradual reduction of viral
effective population size may also be compatible
with the known paleontological record. According
to our temporal reconstruction of events based on a
rate of change of 1.4E-8 s/s/y, the demographic
reduction in the number of lineages (Figure 3)
appears to have taken place after the Gelasian age,
during the Pleistocene, between 1.5 million and 300
thousand years ago. This is a period known for key
changes such as the extinction of the calcareous
nanofossils Discoaster surculus and D. pentara-
diatus and the planktonic foraminifer Globigeri-
noides extremus (Rio et al., 1998; Gradstein et al.,
2005). Interestingly, however, after considerable
growth in Ne� g coinciding with the warmer
Eemian interglacial period, a decline was observed
leading to the present (Figure 3).

Is the environmental movement of Phycodnaviruses
dictated by physico-chemistry?
Because we had information related to the place of
collection of a diverse set of samples, we did use
phylogenetic associations to study the movement of
Phycodnaviruses between aquatic environments.
Our findings supported the notion that Phycodna-
viruses may not be completely mixed (that is,
panmitic) with respect to water environments
(riverine, lacustrine and marine), and that this gene
flow restriction among these environments could
have a significant role in their evolution and
dispersal. Furthermore, we observed freshwater
and marine samples clustering separately, in accor-
dance with previous results obtained from smaller
data set (Clasen and Suttle, 2009) in particular and
with what has been observed for several other
microorganisms in general (Logares et al., 2009).
Data on North American Phycodnaviruses did not
present good evidence for the deep phylogenetic
relationship between marine and freshwater isolates
of group I and II as defined by Short and Short
(2008). However, our results agree with the finding
that freshwater Phycodnaviruses clones are more
closely related to some marine isolates (MpV, OsV
and BpV) than to freshwater isolate PBCV (Short and
Short, 2008). The fact that PBCV radiated deep in the
tree, adjacent to highly divergent seawater samples,
also hindered a precise placement of the root-tree
position, even though the inclusion of sequences
from cultivated viruses had placed it at ‘sea’ in the
maximum clade credibility tree.

Our multi-state character change analyses with
BayesTraits suggested significant restrictions in
Phycodnaviruses movement between salt and fresh-
water, which could possibly explain further restric-
tions on the movement of these viruses among
aquatic environments, or the colonization of specific
freshwater systems like the Negro River. On a
similar vein, a drastic reduction in freshwater viral
counts upon addition of seawater was observed by
Cissoko et al. (2008), suggestive of salinity restric-
tion for virus movement between freshwater and
marine environments. However, the same effect was
not observed upon the addition of freshwater to
marine samples, indicating that marine viruses can
better tolerate reductions in salinity, as do marine
bacteria. Similarly, marine phytoplankton are
known to cope well with changes in salinity,
probably because of their necessity to deal with
tidal variation, precipitation and other environmen-
tal phenomena (Kirst, 1989), whereas freshwater
phytoplankton are usually totally replaced by
marine species in a range of 0.5–10% salinity
(Lionard et al., 2005). Moreover, bacteriophages
isolated from lake water and soil were able to
replicate in marine microbes (Sano et al., 2004;
Logares et al., 2009), which, given that bacteria
tolerate greater salinity variations than algae, sug-
gests that the restriction of Phycodnaviruses move-
ment between fresh and salt water environments
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may be because of distinctions in host biology to some
considerable extent. Nevertheless, freshwater virio,
bacterio and phytoplankton seem to be more suscep-
tible to osmolarity stress than the marine phytoplank-
ton. These findings agree with the phylogenetic tree
root position in the ‘sea’, having the highest posterior
probability. It is important to have in mind that our
main findings and conclusions are based on a limited
number of samples and the transition environments
between marine and freshwaters. Moreover, as a
caveat we should consider that PCR amplification
with the highly degenerate primers we used, could
generate biased sampling because there is no assur-
ance that they can detect all existing Phycodnaviruses
(Chen and Suttle, 1995). Nevertheless, it is worth
considering three aspects: (i) this set of primers did
amplify samples that nest the Prasinoviruses (for
example, our samples had more divergence among
themselves than the divergence seen among Prasino-
viruses, Figure 1), (ii) the primers we used in this
study (AVS1 and POL) successfully amplify the
distantly related Phycodnaviruses that infect E.
huxleyi (Coccolithovirus, Schroeder et al., 2002) that
outgroup all Phycodnaviruses sampled so far; and
most importantly and (iii) even if these primers did
not amplify existing Phycodnaviruses, it would
hardly invalidate our findings regarding both, the
phylodynamics of the detected demes and the
presence of a barrier on the exchange of Phycodna-
viruses among aquatic systems (that is, fresh and salt
water), which may have more to do with host than
virus biology. Nevertheless, a thorough study of
Phycodnavirus phylodynamics in estuaries is essen-
tial to address hypotheses about salinity tolerances,
and gene flow or transitions between freshwater and
marine habitats. In conclusion, our preliminary
coarse-grained phylodynamics and phylogeography
analyses showed an interesting pattern of long-term
dynamic fluctuation of viral demes, and strongly
support the idea that there is no significant gene flow
between terrestrial and oceanic aquatic environments,
possibly because salinity restriction may be a deter-
minant factor limiting Phycodnavirus survival.
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