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Abstract

Malaria affects 300 million people worldwide every year and 450,000 in Brazil. In coastal areas of Brazil, the main malaria
vector is Anopheles aquasalis, and Plasmodium vivax is responsible for the majority of malaria cases in the Americas. Insects
possess a powerful immune system to combat infections. Three pathways control the insect immune response: Toll, IMD,
and JAK-STAT. Here we analyze the immune role of the A. aquasalis JAK-STAT pathway after P. vivax infection. Three genes,
the transcription factor Signal Transducers and Activators of Transcription (STAT), the regulatory Protein Inhibitors of
Activated STAT (PIAS) and the Nitric Oxide Synthase enzyme (NOS) were characterized. Expression of STAT and PIAS was
higher in males than females and in eggs and first instar larvae when compared to larvae and pupae. RNA levels for STAT
and PIAS increased 24 and 36 hours (h) after P. vivax challenge. NOS transcription increased 36 h post infection (hpi) while
this protein was already detected in some midgut epithelial cells 24 hpi. Imunocytochemistry experiments using specific
antibodies showed that in non-infected insects STAT and PIAS were found mostly in the fat body, while in infected
mosquitoes the proteins were found in other body tissues. The knockdown of STAT by RNAi increased the number of
oocysts in the midgut of A. aquasalis. This is the first clear evidence for the involvement of a specific immune pathway in the
interaction of the Brazilian malaria vector A. aquasalis with P. vivax, delineating a potential target for the future
development of disease controlling strategies.
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Introduction

Malaria is one of the most important vector-borne diseases,

affecting 300 million people worldwide every year and 22

countries in America. Brazil presents over half of the total

estimated cases with numbers varying from 300 to 600 thousand

over the past years [1]. The lack of effective vaccines, the

development of drug resistance in Plasmodium parasites and of

insecticide resistance in mosquitoes, have prevented the successful

control of human malaria in many tropical regions. Understanding

the biology of the Plasmodium-mosquito vector interaction is

important to identify potential targets for the development of

novel malaria control strategies to disrupt the parasite life cycle in

the insect vectors and prevent disease transmission to humans.

The mosquito immune system limits parasite development and

over-activation of some immune pathways has been shown to

decrease Plasmodium infection [2,3].

The insect immune system is very efficient in defending against

a diversity of pathogens through multiple innate immune

responses, which are also present in higher organisms [4]. Genetic

studies in Drosophila identified three major signaling pathways that

regulate expression of immune effector genes: TOLL, Immune

deficiency (IMD), Janus Kinase and Signal Transducer and

Activator of Transcription (JAK-STAT) pathways [5]. In mosqui-

toes it was demonstrated that the Imd pathway prevents the

development of Plasmodium falciparum in Anopheles gambiae, Anopheles

stephensi and Anopheles albimanus while the Toll pathway is most

efficient in A. gambiae against Plasmodium berghei [2,3].

The JAK-STAT pathway was first described as a cytokine

induced intracellular signaling pathway [6,7] very tightly regulated

by a series of activators and suppressors. In humans, over-

activation of this pathway has been associated with neoplastic

transformation [8]. In Drosophila, the JAK-STAT pathway has

been implicated in several cellular processes such as regeneration,

homeostasis, eye development and embryonic segmentation. In

addition, in Drosophila this pathway participates in some cellular

immune responses as differentiation of prohemocytes and

hemocyte proliferation, as well as in antibacterial responses [9–
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12]. Recent studies showed that the JAK-STAT pathway mediates

Anopheles gambiae immune response to P. berghei and P. falciparum

[13] and Aedes aegypti response to dengue virus II [14].

In Drosophila melanogaster, activation of the STAT pathway is

initiated when the peptide ligand Unpaired (Upd) binds to the

transmembrane receptor Domeless. This activates the JAK kinase

Hopscotch to phosphorylate the transcription factor Stat92E. The

phosphorylated STAT protein forms a dimer, translocates to the

nucleus and activates transcription of target genes [10]. This

pathway is tightly regulated by various proteins, such as

Suppressor of Cytokine Signaling (SOCS) and Protein Inhibitor

of Activated STAT (PIAS). The SOCS gene is transcriptionally

activated by the STAT pathway as part of a negative feedback

loop that modulates STAT signaling by preventing STAT

phosphorylation, while PIAS inhibits signaling by directly binding

to STAT proteins and targeting them for degradation [15].

Anopheles aquasalis is an important malaria vector in the Brazilian

coast. Although Plasmodium vivax is more widely distributed than P.

falciparum, and there are close to three billion people at risk of

infection by this parasite worldwide [16], research on the biology

and transmission of P. vivax has been neglected for several decades.

This is mostly due to the lack of an efficient continuous cultivation

system and to the misconception that this parasite does not cause

severe malaria [17,18]. Although it has long been considered a

benign infection, it is now accepted that P. vivax can cause severe

and even lethal malaria [19].

We cloned and characterized three genes from the JAK-STAT

pathway: the transcription factor STAT, the PIAS regulatory

proteins and the enzyme NOS. The main goal of this study was to

determine whether the JAK-STAT pathway is activated in A.

aquasalis in response to P. vivax infection and, if so, whether this

response limits Plasmodium infection.

Methods

Ethics statement
For the acquisition of P. vivax infected human blood, patients

were selected among people visiting the Health Center (Posto

Estadual de Saúde da Vigilância em Saúde do Municı́pio de

Iranduba, Distrito de Cacau Pirêra, Amazonas, Brazil) searching

for malaria diagnosis and treatment during outbreaks. Diagnosis

was performed by Giemsa stained blood smears. After P. vivax
positive diagnosis with presence of about 4–8% circulating

gametocytes, patients were interviewed and inquired about the

possibility of volunteer donation of a small amount of blood for

research purposes. Subsequently, a patient consent form was first

read to the potential volunteers, with detailed verbal explanation,

and signed by all patients involved in the study. After this

agreement, 200 microliters of venous blood was drawn from each

patient and placed in heparinized tubes. Blood samples were kept

under refrigeration in an icebox (at approximately 15uC) for about
15 minutes, taken to the laboratory and used to feed A. aquasalis.
All ethical issues of this study followed international rules including

the Declaration of Helsinki. The used protocols, including the

human consent forms, were previously approved by the Brazilian

Ministry of Health, National Council of Health, National

Committee of Ethics in Research (CONEP) (written approval

number 3726).

Insect infection
A. aquasalis were reared at 27uC and 80% humidity [20]. Insect
infections were performed in a safety insectary at an endemic area

of Manaus, Amazonas state, as described in Bahia et al. [21].

Human infected blood containing 4–8% gametocytes or normal

blood (control) were offered to the insects by oral feeding using a

membrane glass feeder device under constant 37uC temperature,
maintained using a water circulation system, to prevent exflagel-

lation of microgametocytes [21]. After the experimental feeding,

mosquitoes were kept in cages at 27uC and given 20% sucrose ad
libitum. Mosquito infection was evaluated by PCR using a specific
Plasmodium 18s rRNA gene [21].

The experimental prevalence rate of infected A. aquasalis

mosquitoes with P. vivax was 36%, as detected by PCR or by
oocysts presence (number of infected mosquitoes/total examined).

The mean intensity of the infected mosquitoes was 7.6% (i.e., the

average number of parasites as calculated using the number of

infected mosquitoes as the denominator). A low number of P. vivax
oocysts were consistently found in the infected mosquitoes, which

is in agreement with the usual low number of human malaria

parasites found infecting mosquito vectors in nature.

PCR using degenerate primers
PCR reactions were performed as described using degenerate

primers designed on conserved regions of STAT and PIAS, based

in sequences of A. gambiae, A. stephensi, A. aegypti and D. melanogaster
[22]. The PCR cycles used were: two cycles (1 min steps at 95uC,
55uC and 72uC, and 95uC, 42uC and 72uC) followed by 30 cycles
at moderate stringency (1 min steps at 95uC, 52uC and 72uC) and
a final 7 min extension at 72uC. All amplicon generated were
cloned into pGEMH-T Easy Vector (Promega) and utilized to
transform high efficiency DH5-a Escherichia coli. Sequencing of the
selected clones was performed using an ABI 3700 sequencer

(Applied Biosystems) and the ABI PRISMH BigDyeTM Terminator
Cycle Sequencing reagent (Applied Biosystems) in the PDTIS/

FIOCRUZ Sequencing Platform.

RACE
The SMART cDNA RACE amplification kit (Becton Dickinson

Clontech) was used to obtain the 59 and 39 ends of the PIAS and
STAT cDNAs. All amplicons generated were cloned and

sequenced as described above. After sequencing, the cDNAs of

STAT and PIAS were assembled using the CAP3 Sequence

Assembly Program (http://pbil.univ-lyon1.fr/cap3.php) and

aligned with other insect sequences with the Clustal W Program

(http://www.ebi.ac.uk/Tools/clustalw2/).

Author Summary

Malaria is endemic in 22 countries in the Americas where
the Anopheles aquasalis mosquito is an important malaria
vector and the Plasmodium vivax parasite is responsible for
most malaria cases. This natural vector-parasite pair is
difficult to study due to the lack of cultivating system for P.
vivax, and to the lack of genome data for A. aquasalis.
Moreover, almost all previous studies are based on African
and Asian anopheline species. Understanding the interac-
tion mechanisms between mosquito vectors and plasmo-
dia is important for the development of malaria control
strategies. Our results showed that the JAK-STAT immune
pathway is activated in A. aquasalis after P. vivax challenge
and is important to maintain the low levels of P. vivax load
observed in this vector. Our results add to the under-
standing of the A. aquasalis interaction with P. vivax and
lead to possible explanations for this vector competence in
P. vivax transmission. All information generated here may
be used to direct the development of new or specific
strategies to block malaria transmission by A. aquasalis in
some parts of the Americas.

JAK-STAT in Anopheles aquasalis Malaria Infection
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Real Time PCR (RTPCR)
RNA was extracted from whole insects submitted to different

experimental conditions (immature stages – egg, first to fourth

instar larvae and pupa; sugar-fed males and females; females fed

on blood and blood from P. vivax malaria patients). The extracted
RNA was treated with RQ1 RNAse-free DNAse (Promega) and

utilized for cDNA synthesis. RTPCR reactions were performed

using the SyberGreen fluorescent probe employing an ABI 7000

machine (Applied Biosystems). The PCR cycles used were 50uC
2 min, 95uC 10 min, 95uC 15 sec and 63uC 1 min for 35 times for
all reactions. The primer sequences were: STATFwd 59 CT-
GGCGGAGGCGTTGAGTATGAAAT 39 and STATRev 59
CGGATAAGGAAGGCTCGTTTTGAAT 39, PIASFwd 59 T-
AGCAGCTCACAGTATAGCCTCGAT 39 and PIASRev 59 T-
CCCATTCCAACCAACAAACCA 39, and NOSFwd 59 AGG-
ATCTGGCCCTCAAGGAAGCCGA 39 and NOSRev 59 AT-
CGTCACATCGCCGCACACGTACA 39. The relative expres-
sion of the selected genes was based on gene expression CT

difference formula [23]. Quantifications were normalized in

relation to the housekeeping gene rp49 [24]. All the experiments

were performed using four to six biological replicates and three

experimental replicates. The Shapiro-Wilk and Levene tests were

used to determine when parametric versus non-parametric tests

should be used. The ANOVA test with multiple comparisons of

Tukey or Games-Howell was used in the analyses. When this

parametric model was not adequate, the Kruskal-Wallis test with

multiple comparisons of Dunn’s was utilized. Bonferroni correc-

tion was used when necessary. All tests were performed with

reliable level of 95% (a=0.05). The statistical analyses were
accomplished using the GraphPad Prism5H and R 2.9.0.

Western blot
Proteins of whole insects submitted to different feeding regimens

(sugar-fed males and females, and females after different times of

blood feeding and infection) were extracted by Trizol Reagent

(Invitrogen) following the manufacturer’s ‘‘instructions for protein

isolation’’ protocol. Samples corresponding to one insect were

separated on 12% SDS-PAGE gels and subsequently transferred

to Hybond nitrocellulose membranes. The membranes were

blocked with 5% non-fat milk TBS Tween 20 0.1% (TBST) for

at least one hour. The membranes were then incubated with anti-

PIAS antibody at a 1:250 dilution for two hours. After three

washes of 10 minutes in TBST, the membranes were incubated

with anti-rabbit secondary antibody at a 1:80.000 dilution for one

hour. Three more washes were performed before the incubation of

the membrane with the detection system Pierce SuperSignal West

Pico chemiluminescent substrate (ThermoScientific).

Immunocytochemistry
Sugar-fed male and female A. aquasalis submitted to different
treatments (sugar-feeding, infected and non-infected blood-feed-

ing) were collected, had their heads, legs and wings removed, and

were fixed overnight at 25uC in 4% paraformaldehyde in PBS.
The insects were dehydrated in 30% to 100% ethanol, and then

infiltrated with Hystoresin kit (Leica) at room temperature for 5–7

days. Hystoresin-embedded mosquitoes were transversally sec-

tioned using a rotary microtome in order to expose the organs

located in the abdomen and thoracic regions. The 3 mm-thick
sections were adhered to slides, dried, incubated for 20 minutes in

1% PBS/BSA and 20 minutes in RPMI medium in order to avoid

nonspecific antibody binding. Sections were then incubated

overnight with 1:250 anti-rabbit STAT or PIAS antibodies diluted

in 1% PBS/BSA. The tissue sections were washed 5–8 times with

1% PBS/BSA and then incubated with rabbit secondary antibody

conjugated to FITC (Molecular Probes), diluted 1:250 in blocking

solution. The same steps were performed in the control samples,

except for the incubation with the primary antibody After two

washes in PBS, the slides were mounted using Mowiol anti-

photobleaching Mounting Media (Sigma Aldrich). Immunostain-

ing was analyzed with a confocal laser microscope (Zeiss-LMS

510). Photos are representative of at least five mosquitoes for each

treatment. Alternatively, midguts of females 24 hpi were dissected,

opened transversely in order to expose the lumen and fixed for

20 minutes (m) in 4% paraformaldehyde in PBS at 4uC in order to
be processed for immunocytochemistry as described elsewhere

[25]. The opened insect midguts were treated with 1% PBS/BSA

followed by RPMI medium as described above. Then, the tissue

sections were incubated with commercial anti-NOS antibody

(Sigma Aldrich SAB4300426) diluted 1:250 in 1% BSA/PBS. Five

washes were performed and the midguts were incubated with anti-

rabbit antibody conjugated to Alexa 594 diluted 1:250 in 1%

PBS/BSA. Five more washes with PBS were performed before

mounting the midguts in slides with Mowiol. The same steps were

performed in the control samples, except for the incubation with

the primary antibody. The material was analyzed by confocal laser

microscopy.

Gene silencing
Double stranded RNAs (dsRNAs) for STAT (dsSTAT) and ß-gal

(dsb-gal) were produced from PCR-amplified fragments using the
T7 Megascript kit (Ambion). Amplicons for dsß-gal were produced

using plasmid templates and for dsSTAT by reverse transcriptase

PCR (RT-PCR) products, from sugar-fed female cDNA, giving

rise to 544 bp and 503 bp fragments, respectively. Two rounds of

PCR were performed to amplify ß-gal. The first PCR round was

performed with primers containing a short adaptor sequence at

the 59 end (tggcgcccctagatg). The primers used for the first round
of PCR were ß-galFwd 59tggcgcccctagatgTGATGGCACCCT-
GATTGA 39 and ß-galRev 59 tggcgcccctagatgTCATTGCCCA-
GAGACCAGA 39. The PCR cycles utilized were 95uC for 3 min,
35 cycles of 95uC for 30 s, 57uC for 45 s and 72uC for 45 s
followed by 72uC for 7 min. Two microliters of the first PCR were
used in the second PCR reaction. The second round of PCR was

utilized to insert the bacteriophage T7 DNA-dependent RNA

polymerase promoter to the DNA templates. The second round of

PCR utilized the same conditions of the first reaction. The second

round PCR primer, which has the T7 (bold letters) and the

adaptador sequences, was 59 ccgTAATACGACTCACTATA-
GGtggcgcccctagatg 39. STAT amplification was performed in one
round of PCR, which also inserted the T7 sequence. The STAT

primer used was STATFwd 59 TAATACGACTCACTATAG-
GGGATGATGTACCGGACCTGCT 39 and STATRev 59 T-
AATACGACTCACTATAGGGGTGTACGATGACGACAAC-
CG 39. The amplification of the STAT sequence was done using
the PCR cycles as follows: 95uC for 5 min and 35 cycles of 95uC
for 30 s, 55uC for 45 s and 72uC for 45 s.
dsSTAT or dsß-gal (69 nL of 3 mg/mL) diluted in water were
introduced into the thorax of cold anesthetized 3–4 day old female

mosquitoes by a nano-injector (Nanoject, Drummond) with glass

capillary needles. After the injection, the insects were maintained

in an air incubator and fed on sugar solution.

At two to three days after the dsRNA injections, the insects were

fed with P. vivax infected blood. Three to five days after infection,

the oocysts in the basal lamina of the gut epithelium were counted

to estimate the P. vivax load in the infected mosquito. Each
dissected mosquito gut was stained with 2% mercurochrome and

observed under light microscopy. At least 30 guts were used for

each experimental condition and three different gene silencing

JAK-STAT in Anopheles aquasalis Malaria Infection
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experiments were performed. Oocyst numbers in dsSTAT injected

insects were compared to insects injected with b-gal dsRNA, a
control for a gene not found in the insect. The significance of gene

silencing effect on oocysts loads was determined by the Mann-

Whitney statistical test.

Semi-quantitative RT-PCR
Total RNA was extracted from females, either sugar-fed or one

to five days after dsRNA injections. Up to 5 mg of RNA were
treated with RQ1 RNAse-free DNAse (Promega) and used for first

strand cDNA synthesis utilizing the ImProm-IITM Reverse

Transcription System (Promega). PCR reaction conditions were

the same utilized for RTPCR, as were the primers (STAT and

rp49). Biological and experimental triplicates were performed.

The PCR reactions were separated in a 2.5% ethidium bromide-

containing agarose gel. The housekeeping gene rp49 was used to

normalize the reactions [24] and sugar-fed female samples were

used as reference samples. The intensity of amplified products was

measured using ImageJ 1.34 s software (http://rsb.info.nih.gov/ij)

and plotted for semi-quantitative analysis. The ANOVA test was

used as statistics method.

Results

Identification and characterization of A. aquasalis STAT
and PIAS
Two genes of the JAK-STAT pathway of A. aquasalis, the
transcription factor STAT (AqSTAT) and its regulatory protein

PIAS (AqPIAS) were amplified by PCR, using degenerate primers
and genomic DNA as template. The 1150 bp (STAT) and 891 bp

(PIAS) PCR fragments were cloned and sequenced. After in silico

predictions of exons and introns, 836 bp and 549 bp coding

sequences were obtained for STAT and PIAS, respectively. These

sequences were used to design perfect-matching primers and the

SMART RACE technique was used to obtain the complete cDNA

sequences of these two genes using a mixture of cDNAs from

males and infected and non-infected females as template. A full-

length AqSTAT cDNA sequence of 1599 bp was obtained,

consisting of a 1491 bp open reading frame (ORF) coding for a

497 amino acid residues protein, plus a 108 bp 39 untranslated
region (UTR) (Figure S1). The full-length AqPIAS cDNA consists

of 2407 bp including a 1953 bp ORF, which encodes a protein of

651 amino acid residues, as well as a 211 bp 59 UTR and 243 bp
39 UTR (Figure S2). These two sequences were deposited in
GenBank with accession numbers HM851178 and HM851177,

respectively.

Sequence analyses and comparison with other mosquito STATs

showed that AqSTAT presents the SH2 domain, the STAT

binding domain and a portion of the alpha domain, but lacks the

STAT interaction domain, presented schematically in Figure 1A.

Phylogenetic approaches showed that AqSTAT grouped with

STATs from other mosquitoes and was more closely related to A.

gambiae STAT-A (the ancestral gene) than to STAT-B (a gene

duplication that probably resulted from a retro-transposition even)

(Figure 1B and C). AqPIAS presents two very conserved domains,

the SAP domain and the MIZ/SP-RING zinc finger domain

Figure 1. Characterization of the STAT gene. A: Schematic representation of STAT protein from A. aquasalis (AqSTAT-A), A. gambiae (AgSTAT-A
and AgSTAT-B) and A. aegypti (AeSTAT-A) showing the STAT interaction domain (yellow), STAT alpha domain (green), STAT binding domain (blue)
and SH2 domain (red). B: Phylogenetic tree for STAT using insect sequences, constructed based on the neighbor-joining method. C: Multiple
aminoacid sequence alignment of STAT of insects. Accession numbers of STAT sequences from: A. aquasalis (Aq) – HM851178, A. gambiae (Ag) (STAT-
A – ACO05014.1 and STAT-B – CAA09070.1), A. aegypti (Ae) – ABO72629.1, Culex quinquefasciatus (Cq) – XP_001866606.1, Culex tritaeniorhynchus (Ct)
– AAQU64663.1, and D. melanogaster (Dm) – NP_996243.1.
doi:10.1371/journal.pntd.0001317.g001

JAK-STAT in Anopheles aquasalis Malaria Infection
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(Figure 2A). The deduced AqPIAS protein had higher homology

to putative ortholog genes from other mosquitoes than to those of

other insects, such as Drosophila pseudoobscura and Apis mellifera
(Figure 2B and C).

Gene expression of AqSTAT and AqPIAS investigated by

RTPCR revealed that these genes are expressed in all mosquito

developmental stages, including adults of both genders. Transcript

levels of STAT are high in eggs (Figure 3A) while PIAS has high

transcription levels in both eggs and first instar larvae (Figure 4A). In

adult stages, both STAT and PIAS were transcribed at higher levels

in males than in females (Figures 3A and 4A). We investigated the

effect of P. vivax infection on expression of these two genes. To

circumvent the inability to culture P. vivax, all mosquitoes used in
these studies were fed on blood drawn from human donors infected

with P. vivax malaria. Both STAT and PIAS genes were
transcriptionally activated by P. vivax infection at 24 and 36 hours

post-infection (hpi). This induction was transient and was no longer

observed 48 hpi (Figures 3B and 4B). Furthermore, PIAS protein

expression was also higher in protein homogenates obtained from

infected females 24 and 36 hpi (Figure 4C).

Identification and characterization of the effector gene
nitric oxide synthase
A 702 bp cDNA fragment of A. aquasalis NOS (AqNOS) was
obtained using degenerate primers, cloned and sequenced. This

fragment is part of the nitric oxide synthase domain of NOS

proteins (Figure 5A). The A. aquasalis NOS is closely related to
mosquitoes’ NOS (Figure 5B and C). This sequence was deposited

in GenBank with accession number HM851179. NOS mRNA

expression was induced by P. vivax infection 36 hpi (Figure 6A).
Immunocytochemistry of A. aquasalis midguts infected with P. vivax
24 hpi revealed high levels of NOS protein expression in the

cytoplasm of some epithelial cells when compared to the blood- fed

insects (Figure 6B and C).

Immunocytochemistry location of STAT and PIAS
To reveal the tissues responsible for the expression of STAT and

PIAS proteins, immunocytochemistry experiments were carried

out. Antibodies against STAT and PIAS labeled distinctly the

tissue sections of A. aquasalis according to the experimental

conditions. There was very little nonspecific labeling in tissue

sections of male (Figures 7A and 8A) or female (Figures 7B and 8B)

control mosquitoes submitted only to incubation with secondary

fluorescent antibodies. In sugar-fed mosquitoes, while males

presented STAT and PIAS immunolabeling in several body parts,

noticeably in the fat body (Figures 7C and 8C), both proteins

expression was weaker in sugar-fed females (Figures 7D and 8D).

In non-infected blood-fed females at 24 h, 36 h and 48 h,

immunolabeling for both STAT (Figure 7E, 7G and 7I) and

PIAS (Figure 8E, 8G and 8I) was mainly in the fat body and eggs.

The labeling intensity increased with time, with fluorescence peak

at 36 h (Figure 7G and 8G), remaining noticeable at 48 h

(Figures 7I and 8I), the last time point used in our experiments.

However, in P. vivax infected mosquitoes, immunolabeling of both

STAT and PIAS appears to be stronger than the non-infected

mosquitoes at 24 h (Figures 7F and 8F) and 36 h (Figures 7H and

8H), but no detectable fluorescence was seen at 48 h (Figures 7J

and 8J). This corroborated our mRNA and protein expression

results.

Silencing of STAT
To test whether activation of the JAK-STAT pathway limits P.

vivax infection in A. aquasalis, the effect of silencing the

transcription factor AqSTAT by systemic injection of dsRNA

was evaluated. As a control, females were injected with dsß-gal, a

gene not present in the mosquito genome. The transcription

level of STAT was greatly reduced (70%) in mosquitoes injected

with dsSTAT, relative to those injected with dsß-gal (Figure 9A

and B). This effect was already observed one day post-injection

and was still present 5 days post-injection. Mosquitoes were

infected with P. vivax two to three days after dsRNA injection.

Three to five days after infection, the guts were dissected and the

oocysts were counted. These experiments revealed that reducing

expression of the STAT gene increased the proportion of

infected A. aquasalis females as well as oocysts density (Figure 9C,

D and E).

Figure 2. Characterization of PIAS gene. A: Schematic representation of A. aquasalis (Aq), A. gambiae (Ag) and A. aegypti (Ae) PIAS proteins
showing the SAP domain (blue) and the MIZ/SP-RING zinc finger domain (red). B: Phylogenetic tree for PIAS of insects constructed based on the
neighbor-joining method. C: Multiple aminoacid sequence alignment of PIAS from insects. Accession numbers of PIAS sequences from: A. aquasalis
(Aq) – HM851177, A. gambiae (Ag) – XP_001688469.1, A. aegypti (Ae) – XP_001647815.1, D. pseudobscura (Dp) – XP_002138569, and A. mellifera (Am)
– XP_623571.
doi:10.1371/journal.pntd.0001317.g002

JAK-STAT in Anopheles aquasalis Malaria Infection
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Discussion

The JAK-STAT pathway is very conserved among species all

the way from insects to humans. This pathway is important in

insect immune response against some pathogens as bacteria [26–

28], virus [14,29] and Plasmodium [13]. A single STAT gene

(STAT92E) was found in Drosophila as well as several other

components of this signaling pathway such as: two homologous

receptor ligands (Upd2 and Upd3), a membrane receptor (Domeless)

and a JAK-kinase homologue (Hopscotch) [10]. Some JAK-STAT

repressors have also been characterized in D. melanogaster, as for

example SOCS (SOCS36E) [30] and PIAS (dPIAS) [31]. Bioinfor-

matics analysis of the A. aegypti and A. gambiae genome sequences

revealed the existence of Domeless, Hopscotch, STAT, PIAS and

SOCS orthologs in these two mosquito species [14,31]. All

dipteran insects examined so far have a single STAT gene, except

for A. gambiae, in which two functional genes (AgSTAT-A and

AgSTAT-B) have been characterized [13]. The AgSTAT-A gene

is ancestral and is the putative ortholog of STAT genes from other

insects. AgSTAT-B is an intronless gene that is evolving fast and

appears to be the result of a retro-transposition event in which an

AgSTAT-A cDNA was re-inserted back into the genome.

Interestingly, AgSTAT-B regulates transcription of AgSTAT-A

in adult stages and is the only STAT gene expressed in pupae [13].

In this work, three genes of the JAK-STAT pathway of A.
aquasalis, the transcription factor STAT, its regulatory protein

PIAS and NOS were cloned, sequenced and characterized. The

domain organization of the PIAS protein is very similar to that of

the A. gambiae and A. aegypti orthologs. The deduced A. aquasalis

STAT, on the other hand, lacks some of the N-terminal conserved

domains present in A. gambiae, A. aegypti and Drosophila STATs. It is
probably the product of alternative splicing, as a similar cDNA

(DN-STAT92) giving rise to a protein that lacks 113 aa at the N–
terminus, has been characterized in Drosophila [32].

Figure 3. Transcription levels of A. aquasalis STAT determined by RTPCR. A: immature stages (eggs, larvae (L1–L4) and pupae), sugar-fed
males (=) and females (R), B: sugar-fed females (dotted line), blood-fed control (BFC) and blood-fed infected females (BFI). h – hours, L1 – first instar
larva, L2 – second instar larva, L3 – third instar larva and L4 – fourth instar larva. +–: s.e.m.; * 0.05.p.0.03, ** 0.03.p.0.01, *** p.0.01. The ANOVA
test with multiple comparisons of Tukey or Games-Howell was used in A. In B the ANOVA test with multiple comparisons of Tukey or Games-Howell
was used in the comparisons between the blood-fed samples analyses and the Kruskal-Wallis test with multiple comparisons of Dunn’s in the blood-
infected samples analyses. Bonferroni correction was used when necessary in the analyses of the blood-infected samples.
doi:10.1371/journal.pntd.0001317.g003

Figure 4. Expression of PIAS in A. aquasalis. A: Transcription levels of A. aquasalis PIAS in immature stages (eggs, larvae (L1–L4) and pupae),
sugar-fed males and females, B: Transcription levels of A. aquasalis PIAS in sugar-fed females (dotted line), and females after blood-feeding and after
P. vivax infection, C: Expression of PIAS protein by western blot in A. aquasalis submitted to different feeding regimens (sugar-fed male (=) and
female (R), blood-fed (control) (BFC) and blood-fed infected (BFI) females) and human blood. h – hours, L1 – first instar larva, L2 – second instar larva,
L3 – third instar larva and L4 – fourth instar larva. +–: s.e.m.; * 0.05.p.0.03, ** 0.03.p.0.01, *** p.0.01. The ANOVA test with multiple comparisons
of Tukey or Games-Howell was used in A. In B, the ANOVA test with multiple comparisons of Tukey or Games-Howell was used in the comparisons
between the blood-fed samples analyses and the Kruskal-Wallis test with multiple comparisons of Dunn’s in the blood-infected samples analyses.
Bonferroni correction was used when necessary in the analyses of the blood-infected samples.
doi:10.1371/journal.pntd.0001317.g004
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AqSTAT and AqPIAS mRNAs are expressed in all insect stages

and both in males and females. The high expression in eggs and

first instar larvae may be indicating that, as in D. melanogaster

[33,34], the JAK-STAT pathway in A. aquasalis may also

participate in oogenesis and embryogenesis. The expression

pattern of AqSTAT mRNA in adult stages is very similar to A.

gambiae STAT-A [13], as in both anophelines males express higher

STAT mRNA levels than sugar-fed females. In A. gambiae,

AgSTAT-A expression remained unchanged 24 hours after

infection with P. berghei [13]. In contrast, AqSTAT expression

was activated transiently by P. vivax infection at 24 and 36 hpi.

AqPIAS presented an mRNA expression pattern similar to

AqSTAT and the induction of these two genes suggests that the

JAK-STAT pathway is activated in response to P. vivax infection.

The induction of PIAS protein expression corroborated the

transcriptional results and provided direct evidence that the

JAK-STAT pathway is also carefully regulated in A. aquasalis.

Silencing AgSTAT-A in A. gambiae females infected with P. berghei

reduced the number of early oocysts present two days post-

infection, nevertheless enhancing the overall infection by increas-

ing oocyst survival [13]. AqSTAT silencing also increased the

number of oocysts, but its effect on very early stages of infection

remains to be established. The peak transcriptional activation of

the JAK-STAT pathway at 36 hpi was similar to what we

observed for other immune genes such as serpins, bacterial

responsive protein and fibrinogen [21], indicating that the

immune system is activated at the time when Plasmodium parasites

have invaded the midgut and come in contact with the mosquito

haemolymph. The activation of the JAK-STAT pathway at this

time of infection may be regulating hemocyte differentiation, as

seen in Drosophila [35]. In the case of A. aquasalis, this could help

killing parasites and controlling infection.

Immunocytochemistry revealed that A. aquasalis STAT and

PIAS not only had concomitant expression but also localized in

Figure 5. Characterization of NOS gene. A: Schematic representation of A. aquasalis NOS protein showing nitric oxide synthase (green), NADPH-
dependent FMN reductase (red) and ferrodoxin reductase (red) domains. B: Phylogenetic tree of insects NOS constructed based on the neighbor-
joining method. C: Multiple aminoacid sequence alignment of insects NOS. Accession numbers of NOS sequences from: A. aquasalis (Aq) –
HM851179, A. gambiae (Ag) – AGAP008255-PA, A. aegypti (Ae) – AAEL009745, A. stephensi (As) – O61608, and D. melanogaster (Dm) – CG6713.
doi:10.1371/journal.pntd.0001317.g005

Figure 6. Expression of NOS in A. aquasalis. A: Transcription of NOS in A. aquasalis following different feeding regimens determined by RTPCR. A:
sugar-fed females (dotted line), blood-fed control (BFC) and blood-fed infected (BFI) females. h – hours. *0.05.p.0.03, ** 0.03.p.0.01, *** p.0.01.
The ANOVA test with multiple comparisons of Tukey was used in the analyses. B: Light microscopy of a transversally open midgut of A. aquasalis
showing the gut epithelium composed by a single cell monolayer. C and D: Immunofluorescence staining of 24 hours BFC and BFI female guts with a
universal anti-NOS antibody showing fluorescent epithelial cells (asterisks) positive for the presence of NOS protein.
doi:10.1371/journal.pntd.0001317.g006
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the same tissues. The expression of these proteins in sugar-fed

males and females was mostly observed in the fat body, with males

presenting stronger labeling than females. This corroborated the

role of the fat body as the main immune organ of the insects. The

detection of high levels of protein in males is in agreement with our

previous results for other A. aquasalis immune genes such as

fibrinogen, bacteria responsive protein and cecropin [21]. This

seems to indicate that male mosquitoes are more prepared for

eventual challenges, as opposed to what was observed in

vertebrates and some invertebrate species, where females are

more immunocompetent than males [36]. The expression of

STAT and PIAS also presented differences between non-infected

and infected insects. The non-infected insects were immunolog-

ically marked mainly in the fat body while the infected ones were

Figure 7. Detection of STAT protein in different tissues of A. aquasalis. A, B, C and D: the figures show the expression of the STAT proteins in
sugar-fed (SF) males and females. A and B - control figures. E–J: the figures show the expression of the STAT proteins in females submitted to
different feeding regimes. E, G and I – 24, 36 and 48 hours (h) blood-fed control (BFC), respectively; G F, H and I - 24, 36 and 48 h blood-fed infected
(BFI), respectively. Arrowheads show the fat body, asterisks represent the eggs and arrows represent disperse cells expressing STAT proteins. To -
thorax, Ab - abdomen, eg - eggs and Bl - blood.
doi:10.1371/journal.pntd.0001317.g007
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marked in dispersed cells along all body and in the ingested blood.

This pattern of expression of proteins from the JAK-STAT

pathway demonstrated that A. aquasalis is producing a systemic
immune response against P. vivax.

In vertebrates, STAT1 regulates NOS expression [37]. DNA

sequences capable of binding to STAT and NF-kB have been
described in the regulatory regions of the NOS gene in A. stephensi

[38]. In A. gambiae, AgSTAT-A participates in the transcriptional

activation of NOS in response to bacterial and plasmodial

infections, NOS expression being activated by P. berghei 24 hpi
[13]. In A. aquasalis, we observed high levels of NOS transcription

at a later time (36 hpi) in response to P. vivax. Luckhart et al.

[39,40] detected an increase in A. stephensi midgut NOS mRNA at

several times (6, 24, 48 and 72 h) after P. berghei infection. In A.

Figure 8. Expression of PIAS in different tissues of A. aquasalis insects. A, B, C and D: the figures show the expression of the PIAS proteins in
sugar-fed (SF) males and females. A and B - control figures. E–J: the figures show the expression of the PIAS proteins in females submitted to different
feeding regimes. E, G and I – 24, 36 and 48 hours (h) blood-fed control (BFC), respectively; G F, H and I - 24, 36 and 48 h blood-fed infected (BFI),
respectively. Arrowheads show the fat body, asterisks represent the eggs and arrows represent disperse cells expressing PIAS proteins. To - thorax, Ab
- abdomen, eg - eggs and Bl - blood.
doi:10.1371/journal.pntd.0001317.g008
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gambiae infected with P. falciparum induction of NOS mRNA was

also observed [41]. High expression of NOS protein was also seen

in the cytoplasm of some midgut cells of A. aquasalis 24 hpi. These

observations suggest that activation of the JAK-STAT pathway

may be regulating NOS expression and that NO may be an

important mediator of the antiplasmodial response. In some

models of vector-parasite interaction as A. stephensi-P. berghei, insect

midgut cells suffer damage after parasite invasion. Among these

are protrusions toward the lumen, loss of microvilli, induction of

NOS and production of NO, which is converted into nitrite and

then into NO2, causing protein nitration that leads to cell death

[42,43]. This epithelial immune response is important to control

parasite numbers and, in some cases, can be decisive for clearance

of infection. Nevertheless, this mechanism is not universal, as

induction of NOS and peroxidase activities were not observed in

other vector-parasite combinations such as A. aegypti–Plasmodium

gallinaceum and A. stephensi–P. gallinaceum [44]. The apparent

inconsistency in the timing of appearance of NOS protein in the

midgut and mRNA levels for this gene might be due to the

expression of NOS mRNA only in the cells of the infected midgut

injured by the parasite passage. Moreover, the expression of the

mRNA in others organs of the insect can explain this discrepancies

since the mRNA experiments were performed with whole

mosquitoes and the protein expression only with the midgut.

Our results showed that the A. aquasalis JAK-STAT pathway is

activated in response to P. vivax challenge. Furthermore,

preventing activation of the JAK-STAT pathway by silencing

the AqSTAT transcription factor increased the infection, as well as

the number of P. vivax oocysts in A. aquasalis mosquitoes. These

results confirm the role of the JAK-STAT in limiting P. vivax

infection of A. aquasalis. Enhancing these responses by using a

transgenic approach may be effective in preventing P. vivaxmalaria

transmission to humans by A. aquasalis mosquitoes.

Supporting Information

Figure S1 Sequence of STAT obtained from PCR
fragments produced using degenerate primers and
RACE PCR. Numbers on the left indicate nucleotide sequence
length and on the right indicate amino acid sequence length;

asterisk indicates the stop codon; aminoacids in italics represent

the hydrophobic binding pocket; the aminoacids in bold format

indicate the phosphotyrosine binding pocket; the underlined

aminoacids represent the alpha domain; the dashed aminoacids

represent the binding domain; uperlined aminoacids indicates the

SH2 domain. The nucleotides in bold format indicate the poly(A)

tail. AqSTAT sequence was deposited under accession

HM851178.

(TIF)

Figure S2 Sequence of PIAS obtained from PCR frag-
ments produced using degenerate primer and RACE
PCR. Numbers on the left indicate nucleotide sequence length
and on the right indicate amino acid sequence length and asterisk

indicates the stop codon. The underlined aminoacids represent the

Figure 9. Effect of STAT silencing on A. aquasalis susceptibility to P. vivax infection. A and B - Effect of dsRNA-mediated knockdown of ß-gal
(control) and STAT on A. aquasalis STAT expression 1 to 5 days after dsRNA injection evaluated by semi-quantitative PCR. Day zero refers to A.
aquasalis sugar-fed females. C- Number of infected insects after dsRNA injections. D and E - Oocyst numbers (D) and visualization (arrows) (E) in
midguts of mosquitoes previously injected with dsRNAfor ß-gal (D, E1 and E2) and STAT (D, E3 and E4) three to five days after Plasmodium infection.
Three replicates of each experiment were performed. The significance of gene silencing on oocyst load in experimental samples, compared to dsß-
gal-treated controls, was determined by Mann-Whitney statistical test with Bonferroni correction.
doi:10.1371/journal.pntd.0001317.g009
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SAP domain and the dashed the MIZ/SP-RING zinc finger

domain. The nucleotides in bold format indicate the poly(A) tail.

AqPIAS sequence was deposited under accession number

HM851177.

(TIF)
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