ANALYSIS OF THE ESSENTIAL OILS AND LARVICIDAL ACTIVITY OF *Hortia longifolia*

D. P. K. Queiroz¹, M. P. Lima^{1*}, M. O. M. Marques², and R. Facanali²

Hortia longifolia Benth. ex Engl. (Rutaceae) is endemic to Central Amazonia [1], and previous study reported the isolation of coumarins, alkaloids, and flavonoids from its bark [2]. Significant inhibitory activity of α -glucosidase, α -amylase, and lipase were found after administration of an amide, coumarin, ferulic and cinnamic acids derivatives isolated from the branches of *H. longifolia* [3]. Here we report the volatile constituents of this species and their larvicidal activity against *Aedes aegypti*.

The essential oils from *H. longifolia* leaves contained nine sesquiterpenes (Table 1) composed mostly of oxygenated spathulenol, caryophyllene epoxide, and mustakone. In the branch essential oil, the sesquiterpene *trans*-nerolidol (KI 1561) was most abundant (99.35%).

The essential oils were investigated for their larvicidal activities against third-instar *A. aegypti* larvae. The branch essential oil showed larvicidal potential, with an LC₅₀ of $34.3 \pm 1 \,\mu\text{g/mL}$ (24 h) and $32.9 \pm 1 \,\mu\text{g/mL}$ (48 h). At a concentration of 200 $\mu\text{g/mL}$, the leaf essential oil showed low mortality (5.0%). The results suggest that *trans*-nerolidol is the active component responsible for the observed larvicidal activity against *A. aegypti*.

Chantraine et al. [4] reported that essential oils containing high concentrations of *trans*-nerolidol have larvicidal activity against *A. aegypti*. This acyclic sesquiterpene seems to have greater larvicidal activity than essential oils high in cyclic sesquiterpenes (e.g., monocyclic and bicyclic) [5, 6].

The samples of *H. longifolia* were collected in the Reserva Florestal Adolpho Ducke, Amazonas, Brazil. A voucher, No. 209963, was deposited in the Herbarium of the Instituto Nacional de Pesquisas da Amazonia (INPA), Manaus, AM. The leaves and branches were dried and subjected to hydrodistillation in a Clevenger-type apparatus for 4 h to produce oil yields of 0.3 and 0.3%, respectively. The essential oils were analyzed by GC-MS using a Shimadzu (model QP-5000) instrument equipped with a fused silica capillary column DB-5 (5% phenylmethylsiloxane; 30 m × 0.25 mm × 0.25 µm). The electron impact technique (70 eV) was used with the injector temperature at 240°C and detector at 230°C. The carrier gas was helium at the working rate of 1.0 mL/min. The column temperature was initially at 60°C, and was then gradually increased up to 240°C at the rate of 3°C/min. The components of the essential oils were identified by comparing their mass spectrum with those in the GC-MS database (NIST 62.lib), literature [7], and retention indices [8].

The essential oils were dissolved in DMSO (20 mg/mL). Aliquots of the stock solution in appropriate concentrations (25–200 μ g/mL) at final volumes of 5 mL were transferred to plastic cups containing distilled water and food. Then 30 third-instar larvae of *A. aegypti* obtained from a permanent colony [6] were placed in each cup. After 24 and 48 h, the number of dead larvae was counted and the lethal percentage calculated. Each experiment was performed in triplicate with a control test (distilled water in DMSO solution).

¹⁾ Coordenacao de Tecnologia e Inovacao, Instituto Nacional de Pesquisas da Amazonia, CP 478, 69011-970 Manaus-AM, Brazil, e-mail: mdapaz@inpa.gov.br; 2) Instituto Agronomico de Campinas, CP 28, 13001-970, Campinas, SP, Brazil. Published in *Khimiya Prirodnykh Soedinenii*, No. 4, July–August, 2015, p. 671. Original article submitted July 16, 2013.

TABLE 1. Chemical Compositions of Essential Oils from Leaves of Hortia longifolia, %

Compound	KI	Leaves	Branches
<i>o</i> -Copaene	1374	2.63	
β-Elemene	1390	3.99	
β -Santalene	1458	1.67	
γ-Muurolene	1474	1.75	
ar-Curcumene	1479	1.71	
trans-Nerolidol	1561		99.35
Spathulenol	1573	17.27	
Caryophyllene epoxide	1578	39.05	
Humulene epoxide II	1603	8.24	
Mustakone	1671	14.29	

ACKNOWLEDGMENT

The authors thank the Brazilian agencies Conselho Nacional de Desenvolvimento (CNPq) and Coordenacao de Aperfeicoamento de Pessoal de Ensino Superior (CAPES) for their financial support.

REFERENCES

- 1. J. R. Pirani, *Rodriguesia*, **56**, 189 (2005).
- 2. D. B. Correa, O. R. Gottlieb, A. P. Padua, and A. I. Rocha, Rev. Latinoam. Quim., 7, 43 (1976).
- 3. D. P. K. Queiroz, A. G. Ferreira, A. S. Lima, E. S. Lima, and M. P. Lima, Int. J. Pharm. Pharm. Sci., 5, 336 (2013).
- 4. J. M. Chantraine, D. Laurent, C. Ballivian, G. Saavedra, R. Ibanez, and L. A. Vilaseca, *Phytother. Res.*, **12**, 350 (1998).
- 5. J. G. M. Costa, F. F. G. Rodrigues, E. O. Sousa, D. M. S. Junior, A. R. Campos, H. D. M. Coutinho, and S. G. de Lima, *Chem. Nat. Compd.*, **46**, 313 (2010).
- 6. L. A. M. Magalhaes, M. P. Lima, M. O. M. Marques, R. Facanali, A. C. S. Pinto, and W. P. Tadei, *Molecules*, 15, 5734 (2010).
- 7. McLafferty; Stauffer, 1989, The Wiley/NBS Registry of Mass Spectral Data, John Wiley Sons, New York, NY, USA, 1989.
- 8. R. P. Adams, *Identification of Essential Oil Components by Gas Chromatography/Mass Spectrometry*, Allured Publishing Corp., Carol Stream, Illinois, 2007.