MÉTODOS DE AMOSTRAGEM E INFLUÊNCIA DOS FATORES AMBIENTAIS SOBRE A COMPOSIÇÃO DAS ESPÉCIES DE BARATAS (ORDEM: BLATTARIA) DA RESERVA DUCKE, MANAUS, AMAZONAS, BRASIL

Diego Rodrigues GUILHERME¹; Vitor Dias TARLI²; Elizabeth FRANKLIN²; José Wellington de MORAIS³ ¹Bolsista PIBIC/CNPQ/INPA; ²Colaborador CBIO/INPA; ³Orientador CBIO/INPA

1.Introdução

Durante os primeiros estágios de sua evolução, as baratas se adaptaram ao escuro e às condições solo das florestas tropicais. Dessa forma, das cerca de 4.489 espécies descritas em todo o mundo, a grande maioria é silvestre (Beccaloni & Eggleton 2011). Elas são encontradas em folhas secas, troncos apodrecidos, margens de córregos, epífitas, arbóreas, em ninhos de insetos sociais, roedores, répteis e aves, e em estruturas criadas pelo homem como habitações, navios e aeronaves, redes de esgoto. (Roth e Willis 1960). Como na maioria dos decompositores, elas são tão adaptáveis que muitas vezes não têm o papel ecológico bem definido. O significado ecológico das baratas, no entanto, é normalmente considerado negligenciável devido ao baixo número de pesquisas. O objetivo deste trabalho foi investigar e registrar a fauna de Blattaria da Reserva Ducke, verificar a relação da abundância das morfoespécies com as variáveis ambientais de porcentagem de argila, pH do solo, altura da serrapilheira, nitrogênio, fósforo e número de árvores e testar a eficiência de dois métodos de coleta para possibilitar um levantamento mais eficiente da diversidade e abundancia de Blattaria em diferentes áreas, assim como a comparação entre as mesmas.

2.Material e Métodos

As coletas foram realizadas na Reserva Florestal Ducke, (02°55' e 03°01' S, 59°53' e 59°59' W), situada nas proximidades de Manaus, Amazonas. A Reserva Ducke cobre 10.000 ha de floresta primária classificada como tropical úmida de terra firme (Hopkins, 2005). Foram utilizados dois métodos de coleta, a coleta ativa noturna e coleta de armadilhas com isca. As baratas foram amostradas em 10 transectos da grade PPBio na Reserva Ducke, no mês de Maio de 2011 entre os dias 09/05 e 16/05. Foram amostradas todas as parcelas da grade PPBio pertencentes às trilhas Leste-Oeste 7 e 8. Para analisar a influência do ambiente sobre as espécies de baratas coletadas, foram utilizados os dados de cada parcela amostrada. As variáveis utilizadas para os modelos de regressões foram: pH do solo, estrutura do solo (porcentagem de argila) e altura de serrapilheira. Como não foi obtida nenhuma relação entre a abundância de baratas com as variáveis utilizadas, optamos por acrescentar outras variáveis para tentar explicar a distribuição das baratas ao longo do gradiente. As variáveis utilizadas foram: Nitrogênio do solo, Fósforo do solo e número de árvores. Foi utilizada uma matriz de correlação de Pearson com correção de Bonferroni com as variáveis independentes, a fim de verificar sua colinearidade. Foram consideradas as correlações que apresentaram r<0,4 e p<0,05.

3.Resultados e Discussão

Com a técnica de coleta ativa foram obtidos 191 indivíduos, onde 11 gêneros foram identificados com o total de 22 morfoespécies. Com a técnica de armadilhas com isca foram capturados 195 indivíduos pertencentes a dois gêneros

com quatro morfoespécies identificadas (Tabela1).

Tabela 1. Identificação dos indivíduos capturados em coleta ativa e armadilhas com isca na Reserva Ducke, Manaus, AM, Brasil.

Coleta ativa				Armadilhas com isca
Família	Gênero	Táxon	Nº de Indivíduos	Nº de Indivíduos
Ectobiidea	Xesthoblatta	Xesthoblatta sp.1	68	84
		Xesthoblatta sp.2	35	82
	Neoblatella	Neoblatella sp.1	27	
	Ischnoptera	Ischnoptera sp.1	9	28
		Ischnoptera sp.2	3	1
	Cariblatta	Cariblatta sp.1	5	
		Cariblatta sp.2	1	
		Cariblatta sp.3	2	
	Chromatonotus	Chromatonotus sp.1	1	
		Chromatonotus sp.2	2	
	Amazonina	Amazonina sp.1	4	
		Amazonina sp.2	1	
	Dendroblatta	Dendroblatta sp.2	1	
Blaberidae	Epilampra	<i>Epilampra</i> sp.1	7	
		<i>Epilampra</i> sp.2	4	
		<i>Epilampra</i> sp.3	1	
		<i>Epilampra</i> sp.4	3	
		<i>Epilampra</i> sp.5	13	
		<i>Epilampra</i> sp.6	1	
	Audreia	<i>Audreia</i> sp.	1	
	Galiblatta	Galiblatta sp.	1	
Polyphagidae	Buboblata	Buboblata sp.	1	
Total		·	191	195

3.1 EFEITO DAS VARIAVEIS AMBIENTAIS NA ABUNDANCIA DAS 8 MORFOESPECIES DE BARATAS CAPTURADAS EM COLETA ATIVA

Foram efetuadas análises de regressão linear múltipla, entre as variáveis ambientais selecionadas e as oito morfoespécies mais abundantes da coleta ativa. No primeiro modelo de regressão linear as morfoespécies não tiveram relação alguma com as variáveis utilizadas onde apenas com *Ischnoptera* sp. 01 a parcial da regressão mostrou tendência à significância para porcentagem de argila (Tabela 2).

No segundo modelo de regressão, onde foram substituídas as variáveis ambientais utilizadas no primeiro modelo por nutrientes do solo (nitrogênio e fósforo) e número de árvores, foi detectado a relação do fósforo do solo para *Xesthoblatta* sp. 02 e do nitrogênio do solo para *Neoblatella* sp. 01 (Tabela 2).

Tabela 2. Regressão linear múltipla entre as variáveis ambientais e as morfoespécies de baratas capturadas em coleta ativa na Reserva Ducke, Manaus, AM, Brasil

Martaganágica	Nitrogênio	Fósforo	N ⁰ de Árvores	Total	
Morfoespécies	Р	Р	Р	R^2	Р
Xesthoblatta sp. 01	0,275	0,657	0,326	-0,059	0,523
Xesthoblatta sp. 02	0,264	0,037	0,128	0,415	0,109
Neoblatella sp. 01	0,015	0,206	0,85	0,561	0,048
Amazonina sp. 01	0,166	0,499	0,57	0,015	0,437
Ischnoptera sp. 01	0,831	0,397	0,638	-0,172	0,661
Epilampra sp. 01	0,838	0,923	0,686	-0,446	0,971
<i>Epilampra</i> sp. <i>05</i>	0,689	0,117	0,308	0,073	0,375
Cariblatta sp. 01	0,708	0,862	0,381	-0,262	0,774

3.2 EFEITO DAS VARIAVEIS AMBIENTAIS NA ABUNDANCIA DAS 3 MORFOESPECIES DE BARATAS CAPTURADAS EM ARMADILHAS COM ISCA

Foram efetuadas análises de regressão linear múltipla, entre as variáveis ambientais selecionadas e as três morfoespécies mais abundantes em armadilhas com isca. No primeiro modelo de regressão as morfoespécies capturadas em armadilhas com isca não apresentaram relação com as variáveis ambientais testadas. Sendo assim o pH do solo, altura da serrapilheira e porcentagem de argila não puderam explicar a distribuição das baratas no gradiente estudado. No segundo modelo de regressão, foi detectada uma relação para as três morfoespécies de baratas mais abundantes em armadilhas com isca, onde *Xesthoblatta* sp. 01 apresentou relação para o fósforo do solo, *Xesthoblatta* sp. 02 para número de árvores e *Ischnoptera* sp. 01 respondeu para o nitrogênio do solo e o número de árvores (Tabela 3).

Tabela 3. Regressão linear múltipla referente as morfoespécies de baratas capturadas com armadilhas com isca na Reseva Ducke, Manaus, AM, Brasil

Manfaantia	Nitrogênio	Fósforo	N ⁰ de Árvores	Total	
Morfoespécies	Р	Р	Р	R^2	P
Xesthoblatta sp.01	0.062	0.036	0.121	0.533	0.057
Xesthoblatta sp.02	0.078	0.062	0.002	0.727	0.012
Ischnoptera sp.01	0.004	0.819	0.025	0.745	0.009

Discussão

No presente trabalho a coleta ativa foi o método o qual se mostrou mais apropriado para realizar um levantamento da riqueza de baratas do local estudado obtendo uma maior diversidade de famílias e gêneros comparados ao método com isca.

No primeiro modelo de regressão linear as morfoespécies não tiveram relação alguma com as variáveis utilizadas onde apenas uma morfoespécie mostrou tendência à significância com a variável porcentagem de argila. No método de armadilhas com isca, as três morfoespécies utilizadas nos modelos de regressão responderam às variáveis estudadas, entretanto, de maneira diferente ao outro método. *Xesthoblatta* sp. 01 teve relação negativa para o fósforo, assim como *Xesthoblatta* sp. 02 para o número de árvores. Foi detectada uma relação entre *Ischnoptera* sp. 01 e o nitrogênio do solo e com o número de árvores. Supomos que estas relações sejam indiretas e pode estar relacionado ao hábito alimentar herbívoro das baratas. O nitrogênio é um elemento importante na dieta dos insetos, porém Mattson (1980) verificou que plantas que possuem uma maior concentração de nitrogênio há uma diminuição na herbívora dos insetos, sendo assim a diminuição da abundância de *Xestoblatta* sp.02 e *Ischnoptera* sp. 01 pode estar relacionada com a alimentação das mesmas. Assim como observado em campo estas duas morfoespécies foram coletadas próximas do solo, explicando o fato da relação ser negativa com o número de árvores.

4.Conclusão

A coleta ativa é a mais indicada para estudos ecológicos quando há interesse em uma maior diversidade de baratas. A armadilhas com isca mostram ser mais eficientes para coletar um maior número de indivíduos, porém com poucas espécies.

As variáveis pH do solo, altura da serrapilheira e porcentagem de argila não foram capazes de explicar a distribuição da abundância das morfoespécies de baratas para os dois métodos de coletas.

As variáveis nitrogênio do solo, fósforo do solo e número de árvores foram capazes de explicar a distribuição de apenas uma morfoespécie para coleta ativa e das três morfoespécies de baratas para o método de coletas com armadilhas com isca.

5.Referências Bibliográficas

BECCALONI, G.W.; EGGLETON, P. 2011: Order Blattodea Brunner von Wattenwyl, 1882. *In*: ZHANG, Z.-Q. (ed.) 2011: Animal biodiversity: an outline of higher-level classification and survey of taxonomic richness. *Zootaxa*, 3148: 199–200. ISBN 978-1-86977-849-1 (paperback) ISBN 978-1-86977-850-7

Hopkins, M.J. 2005. Flora da Reserva Ducke, Amazonas, Brasil. Rodriguésia, 56(86): 9-25.

Mattson, W.J. 1980. Herbivory in relation to plant nitrogen content. Annual Review of Ecology and Systematics 11:119-161.

Roth, L.M., and E.R.Willis. 1960. The biotic associations of cockroaches. *Smithsonian Miscellaneous Collections*. 141:1–470.