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Abstract

Practical applications involving big data, such as weather monitoring, identifi-

cation of customer preferences, Internet log analysis, and sensors warnings

require challenging data analysis, since these are examples of problems whose

data are generated in streams and usually demand real-time analytics. Patterns

in such data stream problems may change quickly. Consequently, machine

learning models that operate in this context must be updated over time. This

phenomenon is called concept drift in machine learning and data mining liter-

ature. Several different directions have been pursued to learn from data stream

and to deal with concept drift. However, most drift detection methods consider

that an instance's class label is available right after its prediction, since these

methods work by monitoring the prediction results of a base classifier or an

ensemble of classifiers. Nevertheless, this constraint is unrealistic in several

practical problems. To cope with this constraint, some works are focused on

proposing efficient unsupervised or semi-supervised concept drift detectors.

While interesting and recent overview papers dedicated to supervised drift

detectors have been published, the scenario is not the same in terms of

unsupervised methods. Therefore, this work presents a comprehensive over-

view of approaches that tackle concept drift in classification problems in an

unsupervised manner. Additional contribution includes a proposed taxonomy

of state-of-the-art approaches for concept drift detection based on unsupervised

strategies.
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1 | INTRODUCTION

In machine learning, the way data must be processed depends on specific characteristics determined by how data are
accessed and their availability. In the case of data streams, they differ from other forms of data in the sense that
instances arrive continuously and sequentially. Over time, the underlying data distribution of the data may change
dynamically. This phenomenon is known as concept drift, and it represents a challenging issue that can impact several
application domains. This fact may explain the high number of surveys published during the last decade, as summa-
rized in Figure 1, focusing on studying approaches to cope with concept drift in different application areas, including
health—surgery prediction Beyene, Welemariam, Persson, & Lavesson, 2015) and sleep quality assessment (Chiang &
Wu, 2018), information security—spam filtering (Guzella & Caminhas, 2009), fraud detection (Abdallah, Maarof, &
Zainal, 2016), and cybersecurity (Bobowska, Chorás, & Woźniak, 2018), and data-driven soft sensors (Kadlec, Grbi�c, &
Gabrys, 2011). In general, methods described in these works are not exclusively machine learning-based, since they are
problem-dependent methods.

Surveys on machine learning-based solutions have also attracted the interest of researchers (Gama, Zliobaite, Bifet,
Pechenizkiy, & Bouchachia, 2014; Hu, Kantardzic, & Sethi, 2019; Lu et al., 2018). However, despite the increasing vol-
ume of concept drift survey publications in this context, the vast majority of them focus on supervised approaches. In
fact, several supervised concept drift methods have been compiled in surveys such as (Lu et al., 2018) and (Barros &
Santos, 2018). For instance, Barros and Santos (2018) present a large-scale comparison of 14 supervised concept drift
detectors. They indicate that semi-supervised and/or unsupervised approaches could be evaluated in future studies.
Krawczyk, Minku, Gama, Stefanowski, and Woźniak (2017) and Barros and Santos (2019) discuss concept drift in data
stream mainly focused on ensemble-based approaches, therefore, they are not primarily concerned with unsupervised
methods. Iwashita and Papa (2019) emphasize the booming concentration of publications on supervised approaches
(roughly 85% supervised, 12% semi-supervised, and 5% unsupervised). Finally, according to Lu et al. (2018), which sur-
veyed more than 130 publications on concept drift, unsupervised or semi-supervised drift detection and adaptation is a
very unexplored research area.

On the other hand, considering real-world problems, it is more realistic to try to solve the concept drift problem in
an unsupervised way, since having the ground truth of the arriving instances available immediately after their classifi-
cation is most often not possible. To the best of our knowledge, there is no survey describing state-of-the-art
unsupervised concept drift approaches and proposing a specific taxonomy to these methods. This survey aims to fill this
literature gap.

This survey was designed to answer the following research questions: (RQ1) Which are the unsupervised drift detec-
tion approaches proposed in the literature? (RQ2) Were these approaches proposed for online or batch data streams?
(RQ3) How can we categorize these approaches into a meaningful taxonomy? (RQ4) What is the contribution of the
proposed taxonomy to existing taxonomies in the literature?

To address these research questions, we followed a systematic review methodology (Okoli, 2015). The selection of
references in this survey paper was performed according to a search string in the Scopus metasearch engine (www.
scopus.com). The first search string was designed to type overviews, surveys, and reviews addressing concept drift from

FIGURE 1 The increasing number of publications as surveys,

overviews, and reviews on concept drift detection published in the

last decade
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2009 through 2019, which resulted in 106 documents. Then, the search was further refined to include only papers in
English published in journals or conference proceedings. This new step led to 78 documents. A first verification in this
group of documents demonstrated a higher concentration of papers published after 2014. Therefore, to review more
recent advances in concept drift detection using unsupervised strategies, we limited the search to the period between
2015 and 2019. This search returned 55 documents. The result is that, in these articles, 16 unsupervised concept drift
detection methods are described, as shown in Tables 1 and 2. These methods are detailed in Sections 3 and 4. The main
steps of this methodology are described as follows.

• Step 1: Search engine. Both searches were conducted using Scopus meta search (www.scopus.com), which searches
in Science Direct (www.sciencedirect.com), ACM Digital Library (dl.acm.org), IEEE Xplore (ieeexplore.ieee.org), and
Springer Link (link.springer.com) databases.

• Step 2: Documents selection. Preliminary triage of articles: The first search was based on keywords. The articles were
then selected as references if they (a) present new theory, algorithm, or methodology in the area of concept drift; or
(b) report a concept drift application.

• Step 3: Result filtering for articles: The articles selected in Step 2 were divided into two groups: Batch and online con-
cept drift detection. The references in each group were filtered again, based on the period of publishing (within the
last 5 years).

• Step 4: Methods selection. The last step screens all documents to extract only papers that propose a semi-supervised
or unsupervised drift detection component in its framework.

TABLE 1 Categorization of batch-based concept drift detection methods

Category Subcategory Method References

Batch NN-DVI Liu, Lu, Liu, and Zhang (2018)

Whole-batch detection FAAD Li, Wang, Yang, Li, and Ma (2019)

UDetect Bashir, Petrovski, and Doolan (2017)

SQSI-IS Maletzke, dos Reis, and Batista (2018)

MD3 Sethi and Kantardzic (2015)

MD3-EGM* Sethi and Kantardzic (2017)

Partial-batch detection PDetect* Sethi and Kantardzic (2018)

DDAL Costa, Albuquerque, and Santos (2018)

Note: Names with an asterisk were introduced in this survey because the methods were not given any name in the
referenced works.

TABLE 2 Categorization of online-based concept drift detection methods

Category Subcategory Method References

Online Fixed reference window IKS-bdd* dos Reis, Flach, Matwin, and Batista (2016)

CD-TDS Koh (2016)

OMV-PHT* Lughofer, Weigl, Heidl, Eitzinger, and Radauer (2016)

NM-DDM* Mustafa et al. (2017)

Sliding reference window Plover de Mello, Vaz, Grossi, and Bifet (2019)

SAND Haque, Khan, and Baron (2016)

DSDD* Pinagé, dos Santos, and Gama (2019)

Multiple approaches DbDDA* Kim and Park (2017)

Note: Names with an asterisk were introduced in this survey because the methods were not given any name in the
referenced works.
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The main contribution of this survey is to propose a taxonomy of state-of-the-art approaches for concept drift detec-
tion based on unsupervised strategies, as well as to present a comprehensive overview of approaches that tackle concept
drift in classification problems in an unsupervised manner.

The remainder of this article is organized as follows. Section 2 discusses taxonomies existing in the literature and
presents the taxonomy proposed in this paper for unsupervised concept drift detection methods. Section 3 presents the
first group of drift detectors, named batch-based methods. Section 4 presents the second group of our taxonomy, online-
based methods. Section 5 aims to compare significant aspects of methods described throughout this work. Finally, Sec-
tion 6 presents conclusion and future work.

2 | TAXONOMY

We previously mentioned that some authors have contributed to the scientific literature with surveys on the subject of
drift detection, such as Hu et al. (2019), Khamassi, Sayed-Mouchaweh, Hammami, and Ghédira (2018), Lu et al. (2018),
and Wares, Isaacs, and Elyan (2019). We note, however, that none of those works is specific to unsupervised drift detec-
tion, though Khamassi et al. (2018) take into account a category that includes unsupervised methods. This article is
exclusively focused on unsupervised detection methods. Therefore, the taxonomy we are proposing is novel and differs
from the previous ones in that it deals specifically with the properties of detectors designed to work in unsupervised
environments.

Lu et al. (2018) proposed a categorization of automatic drift detection methods into three large classes. The first class
includes methods which monitor error rates, The Drift Detection Method (DDM; Gama et al., 2014), Early Drift Detec-
tion Method (EDDM; Baena-García, del Campo �Avila, Bifet, Gavald, & Morales-Bueno, 2006), and others (Gomes
et al., 2019; Xu & Wang, 2017). The second class is composed of methods that use distance measures to estimate the
similarity between distributions of previous and current data. The last class includes methods that make use of multiple
hypothesis tests to detect concept change. None of these classes is specific to unsupervised methods, however, the works
of Haque et al. (2016), Chandra, Haque, Khan, and Aggarwal (2016), and Hosseini, Gholipour, and Beigy (2015) are
presented as unsupervised or semi-supervised methods that belong to the last two classes. Therefore, if we take into
account the taxonomy proposed in Lu et al. (2018), unsupervised detectors may fall under the two last categories.

Hu et al. (2019) proposed a categorization of concept drift detection methods into two large groups named perfor-
mance-based and data distribution-based approaches. Methods based on performance continuously monitor some
error-related metric, such as accuracy, F-measure, precision, and recall. In general terms, a drift is signaled when a sig-
nificant decrease in the metric is observed. Because true labels are required to estimate errors, these methods are not
applicable to unsupervised tasks. On the other hand, distribution-based approaches rely on distribution-monitoring
measures, such as location, density, and range. Methods that belong to this category may be supervised or
unsupervised. We note that this group includes methods from the two last classes from the categorization proposed in
Lu et al. (2018).

Wares et al. (2019) present a categorization for supervised methods only. The methods are classified into four
groups: Statistical methods, window-based methods, block-based ensembles, and incremental-based ensembles. The
first class comprises detectors that use statistical tests, such as the Cumulative Sum and the Page–Hinckley Test
(Page, 1954). This group includes DDM (Gama et al., 2014), EDDM (Baena-García et al., 2006), and the McDiarmid drift
detection method (Pesaranghader, Viktor, & Paquet, 2018). The second class includes window-based methods, which,
in general, monitor the accuracy of the classifier for instances in a window. The last two classes include methods that
rely on monitoring the accuracy of ensembles of classifiers, and they differ on how data are processed during reaction
to drift: Methods in the third class retrain classifiers on chunks or blocks of instances, while methods in the last class
retrain incrementally at each arriving instance.

Khamassi et al. (2018) introduce a taxonomy guided by the questions: “How are data processed?”, “How is learning
processed?”, “How is concept drift monitored?”, “How is concept drift handled?”, and “What are the performance
criteria?”. With respect to the third question, methods are grouped according to the type of detection, specifically
whether it is supervised, unsupervised, or semi-supervised. The authors further refine the classification of unsupervised
methods into similarity in time, similarity in space, and model complexity measures. The first is related to how distribu-
tion evolves between two timestamps, and usually, differences are detected by means of hypothesis tests (Alippi &
Roveri, 2008; Kuncheva & Žliobaitundefined, 2009; Shaker & Lughofer, 2014). The second group includes methods
which monitor the evolution of data distribution in space by means of distance functions, such as Euclidean,
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Heterogeneous Euclidean-overlap, and Mahalanobis distances—as observed in Tran (2019), Tsymbal and
Puuronen (2000), and Gonçalves Jr and Barros (2013), respectively. The last group focuses on changes in the model
structure and/or parameters.

In the taxonomy proposed by Khamassi et al. (2018), the similarity-in-time group is composed of papers published
before our time limit (2015). In fact, as mentioned in Wares et al. (2019), there have been only a few works that take
into account temporal dependence in concept drift detection. Since we focus on the analysis of more recent characteris-
tics of unsupervised drift detection methods, this criterion is not considered in our taxonomy. When observing the simi-
larity-in-space category, it is possible to note that all methods discussed in this article may be included in this group.
Therefore, our taxonomy expands this category of methods. Finally, the last group is algorithm-dependent, while works
described in this article may be generated using any machine learning algorithm.

Therefore, the main differences between the taxonomy we are proposing to the currently existing taxonomies are (a) we
propose a taxonomy specific to unsupervised drift detection methods and (b) we categorize methods according to how the
drift detection is performed, unlike other taxonomies that focus on how classifiers are trained or how they react to drift.

In our systematic literature review, we identified common attributes of unsupervised and semi-supervised drift
detection methods, with the intent of providing a taxonomy. We briefly introduce the categories of the taxonomy in Fig-
ure 2. These categories will be explained in-depth in the remainder of this section.

While concept drift is not exclusive to data streams, all of the methods found in our survey handle instances by
using some form of window on an instance stream. In general, at least one window contains the instances considered
to belong to the most recent known concept, which were used to train or update the most recent predictor. And at least
one window contains the instances which may have suffered a concept drift. Although each author may use their own
terminology, we refer to these windows as the reference window and the detection window. All categories in our taxon-
omy can be explained by how these windows and the instances in these windows are handled by the algorithms.

At the first level of the category, we distinguish methods according to how the detection window is constructed.
One may easily observe that unsupervised drift detectors rely on either accumulating a batch of instances or testing for
drift at every instance, which reinforces the findings presented in (Khamassi et al., 2018). Therefore, methods in the
first group were described as batch drift detection methods, whereas those in the second were categorized as online drift
detection methods. It is important to remark that this classification takes into consideration only how the methods differ
when detecting drift, not how they train, update, or retrain their models, or perform any other specific task once a drift
has been detected.

At the second level of the taxonomy, we categorize batch-based drift detectors according to how they manipulate
the data in the detection window. While the methods differ in many aspects, including whether the size of the batch is
fixed or dynamic, the most remarkable difference among them is whether they use every instance in a batch or sample
the batch to detect drifts. Therefore, the second-level division has the categories of whole-batch detection and partial-
batch detection.

In its turn, online detectors were categorized according to how they manipulate the reference window. In these
methods, the detection window is always a sliding window that advances as new instances arrive, and refers to the cur-
rent concept in the stream. On the other hand, the reference window may be fixed or sliding. Therefore these methods
are categorized into fixed reference window and sliding reference window detectors.

We do not differentiate the methods with regard to how they behave once a drift has been detected. In general, all
of them will train a new model/ensemble of models or update a model/ensemble of models with instances from the
detection window when a drift is detected. Then, the detection window becomes the next reference window. Moreover,

FIGURE 2 Proposed taxonomy of unsupervised

concept drift detection methods
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these windows may or may not overlap, and in the case of online detectors, there may be a period of inactivity until a
new detection window reaches the minimum number of samples required for drift detection.

3 | BATCH-BASED METHODS

In our proposed taxonomy, batch-based detectors differ on how the instances in the batch are used. We use the terms
“batch” and “window” interchangeably. In the first group, whole-batch detection, the entire batch is used in the detec-
tion. In the second, partial-batch detection, only a subset of the batch is used.

A general framework for batch-based detection methods, adapted from Lu et al. (2018), is shown in Figure 3. It com-
bines four modules: Data accumulation, data modeling, distribution comparison, and hypothesis test. The first module
aims to accumulate the initial instances into a fixed-size reference window, and instances that arrive in the sequence
into a fixed-size detection window, since instances arrive continuously and in a sequential manner. As an optional step,
a subset of instances from the detection window can be selected by applying an instance selection approach, as summa-
rized in Figure 4, to generate a smaller detection window for the partial-batch detection methods. Then, the second
module aims to represent data from both windows by means of statistics and other information, as batch summary or
quantification, to express data distribution. Next, these values are the input for the third module, which is designed to
use similarity/dissimilarity measures to compare both windows. Finally, the last module uses hypothesis test to evaluate
thresholds to decide when a drift must be signaled.

A list of the works that were taken into consideration for the definition of the taxonomy of batch-based concept drift
methods is presented in Table 1.

3.1 | Whole-batch detection

The first method we describe in this subcategory is one of the most prominent batch-based detectors. The Nearest
Neighbor-based Density Variation Identification (NN-DVI) algorithm Liu et al. (2018) was proposed to deal with

FIGURE 3 A general framework of unsupervised

batch-based drift detection methods

FIGURE 4 Instance selection strategies used in the

partial-batch detection methods surveyed
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regional drifts. According to the authors, distribution-based drift detectors are global drift oriented and frequently miss
drifts caused by regional density changes. NN-DVI is a distribution-based drift detection method based on regional-den-
sity estimation composed of three modules: (a) kNN-based space partitioning for data modeling; (b) distance function
to accumulate density discrepancies; and (c) statistical significance test.

This method works by comparing the reference window to the detection window as follows. In its first module, NN-
DVI focuses on creating data partitions according to the neighborhood of each example. This strategy results in each
instance being grouped with its instance particle to form a partition. The particle of an instance xi is composed by xi
and its neighbors. Then, instance particle groups are created by taking into account shared neighborhood, that is, each
data instance is represented by a set of shared instance particles, and a multiplicity function is used to provide a multi-
set of instance particles for each instance so as to represent uniform weighted instances. The objective in this first mod-
ule is to allow NN-DVI to be more sensitive to small discrepancies in data distribution. The density differences among
partitions calculated considering instance particles are used to similarity measurement in the second module of NN-
DVI. A set-related dissimilarity measure, also called distance measure, is applied to quantify the differences in the num-
ber of instance particles among pairs of multisets of instances. When comparing sample sets, the distance between two
sets is calculated in terms of their accumulated differences in the number of instance particles. Finally, the last module
involves using a tailored statistical significance test to indicate drift occurrence. The authors assume that instances in
time windows are independent and show that the distance values of sample sets fit a normal distribution. As a result,
they use max likelihood to estimate the mean and variance of sample sets distance distributions. Then, the cumulative
distribution function is compared to a user-defined drift threshold to decide whether or not a drift has been observed. A
Naive Bayes classifier is used as base learner. When a drift is detected, the current detection window is used to represent
the new concept.

The second method is the unsupervised Fast and Accurate Anomaly Detection (FAAD) framework (Li et al., 2019),
which was proposed to tackle unsupervised sequence-anomaly detection in the context of problems involving multi-
dimensional sequences in data streams prone to concept drift. This kind of application refers to analyzing the ordering
relationship in sequences so as to detect anomalies. To achieve such a challenging goal, FAAD is composed of three dif-
ferent algorithms. The first is a feature selection method based on mutual information and symmetric uncertainty infor-
mation to reduce feature redundancy and better cope with multi-dimensional sequences. Then, the second algorithm is
designed to perform anomaly detection by constructing models using random feature sampling and by calculating
anomaly scores with these models. The anomaly scores are compared to a user-defined threshold to determine when a
sequence is an anomaly. Finally, the anomaly buffer based on model dynamic adjustment (ABMDA) algorithm is pro-
posed to detect drifts. The third component is detailed as follows.

The key issue in FAAD is distinguishing between true anomalies and normal sequences incorrectly detected as
anomalies due to concept drift. Consequently, the ABMDA algorithm is divided into two anomaly detection steps. Only
anomalies assigned in both steps are assumed to be true anomalies. The second step is performed using the second com-
ponent (algorithm) of FAAD, while the drift detector is used in the first step. This detector works based on a score
obtained considering (a) the distribution of anomalies and (b) statistics used to express data distribution. In both data
modeling procedures, ABMDA compares the reference window to the detection one. The first procedure is designed to
calculate the proportion of anomalies in the detection window, while this proportion in the reference window is
assumed to obey the normal distribution—the average and variance of reference anomalies are previously calculated.
Finally, the difference between both proportions is obtained. The standpoint is that the proportion of anomalies is low
when the data stream is stable. As a result, the larger the proportion of anomalies in each time period deviates from
that from reference anomalies, the higher the probability that false anomalies are detected due to concept drift.

In the second procedure, the algorithm compares two word frequency matrices M: One from reference data and the
other from detection data. Each matrix M is calculated as follows: Given an attribute xi, the frequency of the occurrence
of the value vj to xi throughout its respective batch is computed and stored in Mi,j. The difference between the two
matrices correlates with a higher chance of a drift having occurred. Next, a weighed sum is calculated between the
aforementioned difference of proportion of anomalies and the 1-norm of matrix difference of frequency. If this sum is
higher than a user-defined threshold, then current anomalies are stored in an anomaly buffer. When this buffer attains
its maximum size, a new model is generated and added to the set of initial models—which are subject to weight updates
and model removal to keep the number of models in check. Subsequently, the second algorithm of FAAD is used to
detect anomalous sequences in the buffer. When sequences are assigned as anomalies in this second detection process,
they are classified as true anomalies. Finally, the detection anomalies distribution and frequency matrix are used to
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update the reference ones. It is important to mention that FAAD is an application-dependent approach whose focus is
toward detecting data anomalies instead of detecting drift.

In the third method, Bashir et al. (2017) proposed a two-level distribution-based framework called Unsupervised
Change Detection for Activity Recognition (UDetect). This framework is based on the premise that a drift is indicated
by high variance from the instances classified to a certain label with respect to the training instances from that label. In
the first level, UDetect trains a classifier and collects data to characterize each class. The second level is unsupervised
and collects batches of data for each class, verifying whether the instances of those classes differ significantly from the
data previously collected.

More specifically, during training, the data are divided into chunks of fixed size such that no chunk contains
instances that belong to more than one class. Each chunk is summarized into a single parameter, which is the average
distance from all its instances to its centroid. Then, the parameters for each class are calculated into thresholds using
three different heuristics. The framework does not impose any restriction on the classifier, and the entirety of the data
may be used to train a model. The result of this phase is a classifier, and a set of thresholds for each class.

The second phase is involved with the employment of the model with the arriving batch of data. For each class that
was known in the first phase, the framework designates a buffer with capacity identical to the size of the chunks from
the first phase. The goal of that buffer is to accumulate a batch of instances that are assigned to a specific label. When a
sufficient amount of data is collected for that class, the chunk is summarized with the same heuristics used in the first
phase. The resulting parameter is compared to the thresholds using Shewart charts (Tobias, 2001) and peaks are identi-
fied to signal that a drift has occurred. The proposed framework was evaluated with two activity recognition data sets,
where subjects are performing activities such as walking, sitting, standing, and so on. Despite its name, there is no clear
indication from the article that the method is specific for activity recognition.

Finally, the last method (Maletzke, dos Reis, & Batista, 2018) is an improved version of Stream Quantification by
Score Inspection (SQSI; Maletzke, dos Reis, & Batista, 2017), methodology for quantification in data streams that uses a
distribution-based drift detector. The problem of quantification is closely related to classification in that the quantifier's
task is to estimate the number of instances of each class in a sample. In fact, a common approach, known as classify-
then-count, is to first classify a set of instances and then count the labels.

SQSI detects drift with a two-step test to verify if the distribution of the classifier errors has changed (Maletzke
et al., 2017). As new instances arrive, they are collected into the detection window of user-defined size. When the window
is full, a classifier provides scores for each instance in an unsupervised fashion, which may be any statistics that represent
the classifier's confidence in that instance, such as the distance from the instance to the hyperplane in Support Vector
Machines (SVMs) classifier. A statistical test is used to verify whether the current scores come from the same distribution
as the scores estimated from the reference data—initially, the training data. If that null hypothesis is rejected, then a linear
transformation is applied to the reference data such that the instances in the window have the same mean and standard
deviation as the detection data (the current concept). Next, new scores are calculated and the statistical test is performed
again. If the null hypothesis is still rejected, then SQSI signals a drift. Once a drift has been detected, SQSI requests true
labels for all instances in the detection window. However, if either test does not reject the null hypothesis, then a new
detection window is created with no overlapping instances with the previous one, that is, a new batch.

“SQSI” with Instance Selection (SQSI-IS; Maletzke, dos Reis, & Batista, 2018) improves the initial version of SQSI
(Maletzke, dos Reis, & Batista, 2018). Both SQSI and SQSI-IS perform the aforementioned two-step check, and both
train a new classifier after a drift has been detected, using the detection window as reference data to detect the next
drift. However, while SQSI requests true label for all instances, SQSI-IS uses instance selection and self-learning to
request true labels for only a fraction of the instances in the batch.

The test used in both algorithms was the Kolmogorov–Smirnov (KS), which is a nonparametric test to identify whether
two samples come from the same distribution (Lovric, 2011). Because KS is very sensitive to changes in the proportion of
the classes (Maletzke, dos Reis, Cherman, & Batista, 2018), the authors suggest using a very strict confidence level (at most
0.001), lest a significant amount of false alarms tends to be raised. For problems where the proportion of the classes does
not change as significantly, for example, classification, a different test or confidence level might be used.

3.2 | Partial-batch detection

In this subcategory, the drift detectors involve selecting a subset of instances from the detection window to check if a
drift has occurred. In general, this module may be undertaken using any instance selection strategy, ranging from SVMs
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margin (Sethi & Kantardzic, 2015) to Active Learning (Costa et al., 2018). All methods discussed in this section use one
of the instance selection strategies summarized in Figure 4.

In Sethi and Kantardzic (2015), the main objective of the proposed Margin Density Drift Detection (MD3) method is to
monitor changes in a classifier's margin—region of the decision space where predictions are highly uncertain. The assump-
tion is that variation's density higher than a user-defined threshold indicates drift. The number of instances that are in the
region delimited by the margin is used to calculate the margin density. This first version of MD3 is an unsupervised drift
detector that uses SVM to obtain a classifier's margin. An SVM classifier is generated using the initial training dataset. Next,
two reference measures are obtained: The maximum and the minimum historical densities. Then, the density is calculated
for the arriving batch. When the number of unlabeled samples increases within the margin, this indicates a gradual drift.
On the other hand, when the number of unlabeled samples decreases, a sudden drift is signaled. MD3 uses a sliding win-
dow to process data stream. After drift detection, this method uses labeled data to replace the SVM classifier and also to
update the reference density values. The main problem of this method is to work only with SVM as learning algorithm.

This limitation inspired Sethi and Kantardzic (2017) to propose an improved version of MD3 to avoid the aforemen-
tioned drawback of the first version. In this new version, which shall be referred to as MD3 Ensemble Generic Margin
(MD3-EGM) in this survey, an ensemble of classifiers is used to produce a generic margin, which is defined as the set of
unknown instances with the highest uncertainty. The uncertainty is measured as the disagreement among member
classifiers when assigning a label for each instance. The ensemble of classifiers is created using the random subspace
approach, that is, it randomly chooses different n subspaces from the original feature space to train n classifiers. The
drift detection is based on monitoring the diversity among member classifiers so that a drift is expected to occur
whether the ensemble's disagreement increases when assigning classes to the unknown samples contained in the detec-
tion window. However, since this new version of MD3 may result in high false-positive rates, a supervised drift confir-
mation module is added to the method. Therefore, we consider this method as a semi-supervised drift detector.

The tracking of the disagreement is conducted in the following way. Four reference measures are obtained from the
reference window using a 10-fold cross-validation training and test procedure: Disagreement and prediction perfor-
mance, along with their standard deviation. Next, the disagreement between the classifier members is calculated con-
sidering the instances of the detection window. Then, considering the instances within the margin, the drift detector is
divided into two significant levels: Unsupervised and supervised drift indicators. These two levels use a threshold
weighted in terms of the standard deviation of the reference measures. In the first detection level, the current accumu-
lated disagreement is compared to the reference agreement. If the difference between both values is higher than the
threshold, the second drift indicator is triggered. The second level works by selecting a group of instances from the cur-
rent batch to be labeled and to be included in a dataset, which is used to calculate the current prediction performance.
This value is compared to the reference prediction performance. It is assumed that a concept drift takes place when the
difference between both values is higher than the threshold. The instance selection performed is a procedure where a
fixed number of instances that arrive after the first drift indication are labeled. Finally, the ensemble of classifiers is
retrained using the dataset created after the second drift indicator. It is worth noting that this method may handle clas-
sifiers without explicit notions of margin, however, it needs a supervised drift confirmation to take a final decision.

The Predict–Detect streaming classification framework proposed by Sethi and Kantardzic (2018), which shall be
referred to as PDetect in this survey, was designed to cope with a specific application, precisely adversarial attacks. The
assumption is that attacks lead to changes in the distribution of the data and to decreasing the prediction capabilities.
When this application problem is dealt with in the context of streaming data mining, these changes are called adversar-
ial drifts. According to the authors, proposing an application-dependent method is a key issue in this kind of problem,
since the application-independent nature of distribution-based drift detectors may be a drawback when facing adversar-
ial drifts. The problem arises because the detectors may be vulnerable to adversarial manipulation at test time. To over-
come this drawback, they propose an adversarial-aware drift detection method developed as an ensemble-based and
classifier-type independent framework.

The proposed framework splits the feature space of the training dataset into two disjoint subsets to train two classifi-
cation models: (a) predict and (b) detect. The division of the feature space is performed by ranking all available features
according to their F-value from ANOVA and distributing the features between both classifiers in a round-robin strategy
to obtain high predictive classifiers. The prediction classifier is designed to assign label to the unknown instances of the
detection window, while the detect classifier is responsible for indicating adversarial activity. The former is prone to get
attacked at some point. The latter is expected to be invulnerable to adversarial manipulation at test time, since it is a
hidden component in the prediction process. These classifiers form a self-monitoring scheme. When the disagreement
between their predictions significantly reduces over time, this may indicate a possible drift.
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The drift detector works as in (Sethi & Kantardzic, 2017). Here, however, only two classifiers are taken into account.
Consequently, this method uses a semi-supervised drift detector. Once a drift has been detected, the two classifiers are
retrained using the dataset created after the first drift indication. In terms of feature partitioning, the feature split may
be kept the same or a new one can be generated.

Costa et al. (2018) also proposed a drift detection method based on the hypothesis that the density variation of the
most significant instances may indicate drift. In this work, the instance selection procedure is based on Active Learning.
The proposed method, named Drift Detection Method Based on Active Learning (DDAL), is divided into two phases.
The first phase involves generating a classifier using instances contained in the reference window (first batch of data),
while the second is subdivided into three modules: Drift detection, reaction, and classification. In the second phase,
DDAL monitors the occurrence of concept drift for each new batch of unlabeled data and depending on the result of
drift detection, it also performs the reaction and the classification modules.

The detection module works by calculating the density of the most significant instances chosen from the detection
window using the Fixed Uncertainty Active Learning strategy (Žliobaitė, 2014) as follows. Virtual margins are created
as the projection of hyperplanes, which are set according to a user-defined uncertainty threshold, that are equidistant
to the separating hyperplane. For each instance in the detection window, the classifier maximum posterior probability
is calculated and compared to the uncertainty threshold. All instances whose confidence value is lower than the thresh-
old are assumed to be inside the subspace delimited by virtual margins and, consequently, are selected for the density
calculation. The density value is obtained computing the number of instances that fall into the subspace delimited by
virtual margins divided by the number of instances in the detection window. Then, this density value is compared to
the reference maximum and minimum density values. The new values replace the reference ones when it is greater
than the reference maximum or lower than the reference minimum. Finally, if the difference between these two values
is greater than a user-defined drift threshold, then a drift is signaled and the reaction module is triggered. At the reac-
tion module, a new classifier is generated using the detection window data in replacement to the current classifier. Only
at this point, the instance's true labels are required, since a new training set must be provided. On the other hand, if no
drift is detected, DDAL reaches its classification module, where samples of the detection window are classified. Then,
DDAL returns to the detection module to monitor the next batch of unlabeled instances.

4 | ONLINE-BASED METHODS

As discussed in Section 3, batch-based methods work by accumulating instances into a batch of data, and when the
batch is full, one or more algorithms are triggered to detect if a drift has occurred since the last predictor was trained.
In contrast, online-based methods check for drift at every arriving instance—possibly after an initialization period to
accumulate instances before the first check may be performed. All online-based methods analyzed in this survey use a
sliding detection window. However, some of them differ in that the reference window is fixed over the training
instances, while others slide the reference window into the unlabeled samples arriving from the drift (possibly over-
lapping with the detection window). Therefore, our proposed taxonomy refine the online category into methods that
use fixed and sliding reference windows. The works analyzed in each category are discussed in the next subsections,
and Kim and Park (2017) is discussed in Section 4.3, as the method proposed by the authors has variants for both fixed
and sliding reference windows.

A general framework of unsupervised online-based drift detection methods is presented in Figure 5. The framework
is divided into three modules: Data retrieval, (dis)similarity measurements, and significance test. The first module is
devoted to receive incoming data instances to generate the reference window, which, as mentioned before, can be fixed
or sliding. This first module is also responsible for manipulating the detection window, which is always a sliding win-
dow. The second and third modules are similar to the third and fourth modules of the framework of batch-based
methods, respectively. A list of the works that were taken into consideration for the definition of the taxonomy of
online-based concept drift methods is presented in Table 2.

4.1 | Fixed reference window

The Incremental Kolmogorov–Smirnov test (IKS) is an online variant of the KS test proposed in dos Reis et al. (2016). It
uses a treap data structure to insert and remove observations into a dynamic set that allows updating the p-value for
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the KS test without revisiting entire batches of data. The advantage of IKS is that it behaves exactly as the traditional
KS test, but with much lower overall time complexity when applied multiple times as a sample is updated with new
objects.

Dos Reis et al. (2016) also proposed an online unsupervised drift detection method using the IKS, which shall be
referred to as IKS-based Drift Detector (IKS-bdd) in this survey. The principle behind IKS-bdd is to apply the IKS test
individually to each attribute. This removes the necessity of using multivariate tests or mapping functions, thus reduc-
ing the required amount of data. The detection of a change in a single attribute may be sufficient to trigger the detection
of concept drift. The downside of this approach is that some drifts may not be detectable when features are analyzed
individually, although a multivariate detector might work for the same data.

For each attribute, IKS-bdd keeps two windows of size W. The reference window is fixed and contains the data that
was used to train the most recent model. The detection window is sliding and contains data from the stream. As each
instance arrives, it is classified and the IKS test is performed, comparing the distribution of the data in the reference
window against the detection window. If the null hypothesis that the distributions are identical is rejected, then a drift
is signaled. Otherwise, the window is shifted and a new instance is taken from the stream.

The authors propose three reactions to drift. The first is Model Replacement (MR), which consists of requesting true
labels for all instances in the detection window and then training a new classifier. The second approach is AB transfor-
mation, and it involves (a) applying a linear transformation to the reference data, such that the attributes involved in
the drift will have mean and standard deviation identical to those of the instances in the detection data; (b) performing
the KS test again, resorting to MR if the null hypothesis is still rejected. The third approach is a modified decision tree.
When a drift is detected, true labels are requested only for instances that reach the leaves with a decision on the attri-
bute that triggered the drift.

Koh (2016) proposed an unsupervised drift detection method specifically for transactional data streams—problems
involving representing interactions between entities or items. The method is named Change Detection in Transactional
Data Stream for Frequent Pattern Mining (CD-TDS) and can be divided into two parts: (a) Local Drift Detector and (b)
Global Drift Detector. When there are changes in some items but no changes in the connections among items are
observed, this behavior may indicate a local drift, more precisely a virtual concept drift. In terms of global drift detec-
tion, the connections among the items must change to indicate a drift due to new concept generation or old concept
disappearing.

The main procedure of the local drift detection involves comparing two windows W0 and W1 of a stream S using
Hoeffding Bound. The difference in terms of sample means between both windows is compared to a value ϵ defined by
the Hoeffding bound. Then, a drift is signaled when this difference is greater than ϵ. It is important to highlight that this
local drift monitoring process is similar to that used in ADaptive sliding WINdow (ADWIN; Bifet and Gavaldà (2007).

To detect global drift, a tree structure is used to represent the connections between items in S. In this way, the two
windows S0 and S1 are represented by graphs. To determine whether or not the two windows present high dissimilarity,
a pairwise statistical test is used for testing the disagreement between the two tree structures. Several disagreement met-
rics reported in the literature could be used to measure this diversity, such as edit distance, largest common subtree,
and smallest common supertree. In Koh (2016), the authors have worked with the Levenshtein edit distance
(Gilleland, 2020).

FIGURE 5 A general framework of unsupervised

online-based drift detection methods
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4.2 | Sliding reference window

Lughofer et al. (2016) proposed two techniques to handle concept drift with few labeled instances and no labeled
instances at all: The first technique uses single-pass active learning filters to select the most interesting samples for
supervised classification, and the second considers the overlap between two classes in a classifier's output certainty dis-
tribution. In both cases, an online modified version of the Page–Hinkley test (PHT; Mouss, Mouss, Mouss, &
Sefouhi, 2004) is performed to detect drifts, which shall be referred to as Online Modified Version of the Page–Hinkley
Test (OMV-PHT) in this article. The PHT is used to detect abrupt changes in a Gaussian signal x. It uses the difference
between the x(t) and the previous average �xt−1.

That signal is the performance indicator of the classifier. In the semi-supervised scenario, active learning is used to
select the most significant instances to estimate the classifier error. The unsupervised technique for drift detection is
based on the idea proposed by (Donmez, Lebanon, & Balasubramanian, 2010) to estimate classification errors without
labels. It assumes that the uncertainty estimates of the two most probable classes correspond to a bimodal distribution,
and that this distribution can be assumed to be two distinct Gaussian distributions. The overlap of these distributions
can be used as an estimate of the error. Thus, the degree of variation of overlap is used as the signal for the PHT.

Mustafa et al. (2017) proposed a novel class detector, referred in this article as Nonparametric Multidimensional
Drift Detection Method (NM-DDM), which is based on denoising autoencoders and an NM-DDM based on log-likeli-
hood random walk. We are interested in the former. That drift detection method relies on calculating the log-likelihood
ratio between data from two windows, one prior to the potential drift point, and the second after. The log-likelihood is
estimated for each dimension (attribute) and if the highest ratio between the two windows is greater than a threshold,
then a drift is signaled. After a drift is signaled, the samples in the last window are used to train a new classifier. The
instances with low confidence values are labeled by an external component, while the samples with high confidence
values are labeled using the predicted label.

Plover is a proof-of-concept algorithm proposed in de Mello, Vaz, Grossi, and Bifet (2019). The authors performed
an analysis of theoretical foundations and learning guarantees in unsupervised concept drift detection. They conclude
that, while supervised methods are supported by statistical learning theory, unsupervised approaches depend on inter-
nal or external metrics that do not rely on similar guarantees. Internal metrics, such as cluster compactness and cen-
troid distance, are calculated from the structure of the data, while external metrics depend on supervised labels—which
cannot be realistically expected to be available in truly unsupervised tasks.

The concept of Algorithm Stability (Bousquet & Elisseeff, 2002) establishes conditions for any arbitrary function to
converge with its expected value. Plover is a uniformly-stable concept drift detection algorithm that derives from that
concept. Similar to other online methods discussed in this section, it computes the divergence between a sliding detec-
tion window and a reference window, and if this difference is greater than a threshold, a drift is signaled. According to
the authors, two premises are required to use the proposed theory: (a) the function must be selected independently of
the input data and (b) input data must be independent and identically distributed. Such function should be adequate to
the problem at hand, for example, mean, variance, spectral power, and so on.

Haque et al. (2016) proposed a framework for detection of drift and novel class on data streams called SAND (Semi-
supervised Adaptive Novel Class Detection and Classification over Data Stream). SAND uses an ensemble of k-nearest-
neighbor (kNN) classifiers and is divided into two modules: Outlier detection and concept change detection. In addi-
tion, it is also focused on performing data self-annotation. As the framework observes more and more outliers, a cluster-
ing-based algorithm checks if these outliers are instances of a novel class to further train the ensemble with samples of
the new class.

When an unknown example xi arrives, SAND predicts its label by majority voting and estimates the confidence of
each classifier using two heuristics: Association and purity. The association heuristic estimates the confidence of a clas-
sifier by measuring the distance between xi and its closest pseudopoint—which the authors define as a structure that
contains the centroid, radius, and the number of data points belonging to each class. The second heuristic is mainly
focused on monitoring the most frequent class in the pseudopoint associated to xi. Subsequently, a variable-size window
stores xi, its class prediction and the confidence scores.

After the instance has been classified, SAND monitors the confidence scores to detect drifts. The drift detection pro-
cess is performed by assuming that the confidence values follow a beta distribution. Values stored in the variable-size
window are used to estimate the distribution parameters and the result is compared to a threshold. If a drift is detected,
SAND requests only true labels for instances with low confidence scores. These instances are incorporated into the new
training dataset, alongside with self-annotated ones, and the ensemble is then updated using the new training dataset.
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In line with the idea developed in Haque et al. (2016), Pinagé et al. (2019) proposed an unsupervised drift detection
method that also allows self-annotation. This method, called here Dynamic Selection Drift Detector (DSDD), performs
dynamic classifier selection from an initial ensemble of classifiers and uses a configurable auxiliary drift detector guided
by a pseudo-error rate as metric to detect drifts. It is divided into three modules: (a) ensemble creation; (b) dynamic
selection; and (c) detection. The first module works by partitioning an initial batch of labeled instances—composed of
the first m incoming instances—into training and validation datasets.

The first dataset is used to generate an ensemble of classifiers using a modified version of the Online Bagging,
Minku, White, and Yao (2010) algorithm, that is, each member classifier is trained with n copies of each instance,
where n is defined by the Poisson distribution. The authors highlight that low n values define high diversity
among ensemble members. They set values high enough to result in significant high diversity so as to generate
different member classifiers. Instances from the second dataset are used as reference regions of competence in the
dynamic selection module, which assumes that each member classifier is an expert in a region of competence.
This second module works as follows: When an unknown instance xi arrives, a region is defined in terms of its
neighborhood in the validation dataset. Then, the competence of each member classifier is calculated. The classi-
fier with the highest competence is chosen to assign a label to xi. This decision is assumed to be the pseudo true
label of xi.

Finally, the detection module applies a drift detector to each member classifier. Since the idea proposed is not to use
the instance's true labels, the key issue in this method is to compare the prediction provided by each member classifier
to xi to its pseudo true label in a pseudo error monitoring process. This pseudo-error can be used as a metric in several
supervised drifts detectors available in the literature. The authors have used both the DDM (Gama, Medas, Castillo, &
Rodrigues, 2004) and the EDDM (Baena-García et al., 2006). When a fixed number of member classifiers indicate a
drift, a drift is signaled and the validation dataset is updated using new labeled samples. Otherwise, the ensemble of
classifiers online learning proceeds using the self-annotated labels.

4.3 | Multiple approaches

Kim and Park (2017) proposed a distribution-based drift detection approach, which shall be referred to as Distribution-
based Drift Detection Approach (DbDDA) here. DbDDA signals drifts when the classifier uncertainty becomes too high.
Initially, a classifier is trained using labeled instances. Then, for each incoming instance xi, a posterior probability vec-
tor f(xi) is estimated. A second vector �y xið Þ is also determined. This vector is such that there are only components with
value 1 for the class predicted to xi, while the others are 0. The random variable X is drawn from the distances
X xið Þ= f xið Þ−�y xið Þk k2 and is used to estimate the classifier uncertainty.

The proposed method monitors the differences X(xi) for the instances in the reference window and in the detec-
tion window. Since the classifier is trained with data from the reference window, instances in that window come
from the current concept, while the instances in the detection window might have been generated from new concept.
Before classification begins, the algorithm finds a confidence interval for X from the data in the reference window.
As each new example arrives, the average value of X(xi) is calculated from the instances in the detection window. If
the difference is higher than the upper limit of the confidence interval, then a drift is assumed to have occurred. In
this case, true labels are requested for the instances in the detection window and these instances are used to train a
new classifier.

The detection window is always a sliding time window. But the authors propose three different strategies for the ref-
erence window. The first two are classic fixed time window and sliding window. In both cases, the reference window
does not overlap with the detection window. A third approach, which the authors named Ensemble of Reference Win-
dows (ERW), is based on the use of Control Chart of means and standard deviations. Theses charts observe change in
distribution using the mean of the windows means and the mean of windows standard deviations. While in the previ-
ous methods a single reference window is used, in ERW a new pair of reference and detection window is introduced as
each instance arrives, until a drift is detected.

Additionally, Kim and Park (2017) propose an approach for the situation when no labeled data is available. In this
case, it is not possible to build an initial model. The authors thus suggest applying k-means to obtain a cluster structure,
resulting in a virtual classifier. Then the classification and drift detection procedure is carried out as previously
explained.
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5 | DISCUSSION

Concept drift is a challenging problem for learning in data stream scenarios. One way to handle this issue is by monitor-
ing data streams and updating the current prediction model(s) with new concepts when significant changes occur. On the
one hand, it is widely accepted that, due to the massive volume of incoming data from the streams, true labels are usually
not immediately available. In addition, depending on the task to be solved, labeling these data might be a costly process
that sometimes may also involve manual labor from multiple domain experts. On the other, it is easily observable a pre-
dominance of methods that address the concept drift problem by monitoring the evolution of indicators or measures based
on the error rate of the current prediction model(s). For instance, DDM (Gama et al., 2004)—indicated by Lu et al. (2018)
as one of the most-referenced concept drift detectors—works by counting the number of errors. Another example is
EDDM (Baena-García et al., 2006), based on monitoring the distance between two classification errors.

In view of the difficulties in supervised approaches, drift detectors that can operate in unsupervised mode have been
proposed. These approaches are expected to significantly lower the burden of label dependency in the same way that
they could make better use of the available data, since unlabeled data are more often accessible. Besides, they may help
handling virtual concept drift, that is, when the decision boundaries are not affected by incurring changes (Khamassi
et al., 2018). According to the survey presented in this article, the unsupervised methods described fall into two basic
categories: Batch-based and online-based approaches. However, both groups address the concept drift problem from
the same viewpoint: The underlying data distribution must be monitored so as to identify the points at which the data
distribution experiences a significant change. Even so, each approach uses strategies to cope with this issue that differ
in their details and tend to suffer from different limitations.

The description provided in this article allows us to observe several properties discussed in this section and summa-
rized in Table 3. First, most of unsupervised methods are global-drift oriented. Consequently, a major drawback is the
possibility of missing regional drifts, leading to problems as poor or high sensitivity, and high false alarm rate, especially
in detection of concepts that change very gradually. Considering the fact that online-based methods monitor each
instance at a time upon arrival, these methods are less prone to missing local drifts, even when only focusing on
detecting global drifts. The batch-based approaches, however, may be more severely impacted, since they monitor drifts
considering the entire sample set, even the partial-batch ones. As a result of the attempts to overcome such a limitation,
some strategies have been developed. For instance, NN-DVI (Liu et al., 2018) focuses on defining neighborhoods to cope
with regional drifts, whereas FAAD (Li et al., 2019) performs feature subset selection and feature sampling.

TABLE 3 Compilation of some of the characteristics of unsupervised drift detectors reported in the literature highlighting the type of

drift dealt with; whether there is application dependency; whether self-annotation is conducted; and the dependency on labeled data

Method Drift type Application Self-annotation Need label

NN-DVI Local Independent

FAAD Local/global Sequence anomaly

UDetect Global Independent

SQSI-IS Global Independent ✓

MD3 Global Independent

MD3-EGM Global Independent ✓

PDetect Global Adversarial attacks ✓

DDAL Global Independent ✓

IKS-bdd Global Independent

CD-TDS Local/global Transactional data

OMV-PHT Global Independent

NM-DDM Global Independent ✓

Plover Global Independent

SAND Global Independent ✓ ✓

DSDD Global Independent ✓ ✓

DbDDA Global Independent ✓
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From this table, it is also possible to observe that the studied methods are mainly application independent. They are
usually tested in synthetic data and few real datasets. When real-world datasets are investigated, these are general,
small-scale, and rather toy benchmark datasets compared to the recent large-scale real-world datasets. There are, how-
ever, works that use larger-scale and challenging real-world datasets, such as IKS-bdd (dos Reis et al., 2016), and works
that investigate recent application problems, such as adversarial attacks, studied in PDetect (Sethi & Kantardzic, 2018).
It is worth noting that the lack of benchmark datasets for evaluation is a limitation of the existing literature of concept
drift in general (Wares et al., 2019). Nonetheless, a different scenario is observed for the supervised drift detectors,
whose evaluation has been conducted using more realistic and recent datasets—for example, demand for taxi networks
(Saadallah et al., 2020).

Despite this research being primarily concerned with unsupervised drift detection methods, some techniques
reviewed involve labeled instances. In the partial-batch detection group, for instance, a main problem is that these
approaches may be critically affected by the instance selection strategy used. Moreover, the reduction in the number of
instances used to monitor data distribution may result in high false detection rates. Methods that focus on tackling this
issue, such as MD3-EGM (Sethi & Kantardzic, 2017) and PDetect (Sethi & Kantardzic, 2018), include supervised drift
confirmation to decrease false detection rates. Nevertheless, supervised confirmation adds dependency on real labels, as
opposed to the label independence pursued by the unsupervised detectors. Some online-based methods may also suffer
from this limitation, as DSDD (Pinagé et al., 2019), which involves with-holding a subset of labeled instances to be used
as a validation set to allow dynamic classifier selection.

One distinct advantage of some unsupervised methods is the ability to find informative unlabeled samples to be
self-annotated and added to the training set, which is especially important for detectors used in online learning scenar-
ios. The criterion used for sample selection is basically the same: Class labels are only requested for instances whose
confidence values are low, as seen in SAND (Haque et al., 2016), NM-DDM (Mustafa et al., 2017), and DSDD (Pinagé
et al., 2019). Finally, there are unsupervised methods that do not aim only establishing a drift detector. In this case,
their final objective is a different task, like anomaly detection, as in FAAD (Li et al., 2019), and novel class detection, as
in NM-DDM (Mustafa et al., 2017).

There are additional properties that are worth mentioning. One of these is the need for accumulating a batch of
instances into a detection window before attempting to detect drift on batch-based approaches. This may be pointed out
as a limitation due to the following reasons: (a) drifts can occur at intervals that are not limited by the window size and
(b) handling concept drift requires updating models on an ongoing basis. This problem is even more notable in
approaches that assume more restrictive assumptions. For instance, in UDetect (Bashir et al., 2017), since a particular
window size is fixed for each class, the drift detector needs to accumulate a fixed number of instances for each class
before determining if a concept drift has occurred.

This last limitation is avoided in online-based methods, as they monitor each instance at a time upon arrival. How-
ever, while it can be argued that batch-based approaches have low memory and run-time overheads, given that they
only focus on monitoring the measures extracted from the reference window, not the instances in the window itself,
the opposite is observed in the online-based group. This group of approaches, especially the fixed reference window
methods, such as the IKS-bdd (dos Reis et al., 2016), usually has to keep the reference window instances in memory to
be able to detect the distribution changes caused by the incoming instances. One alternative to face this problem is
using data representation, as the tree and the pseudopoint structures used in Koh (2016) and in Haque et al. (2016),
respectively.

6 | CONCLUSION

In this work, we proposed a taxonomy for some state-of-the-art unsupervised concept drift approaches. We conducted a
systematic literature review (Okoli, 2015) to provide two groups of recent scientific publications on concept drift detec-
tors: (a) Articles surveying and analyzing different concept drift approaches, and (b) Articles proposing unsupervised
concept drift methods. The first group allowed us to observe that very few work has been dedicated to summarizing
unsupervised concept drift approaches. The second group, in its turn, led us to group unsupervised and semi-supervised
drift detection methods into two main categories: Batch-based and online-based methods. Online and batch drift detec-
tion methods refer only to the detection component of the strategy. On the one hand, online methods indicate the
occurrence of a drift on data stream one instance at a time. On the other hand, batch methods need to process a set of
instances at a time to be able to sign a drift.
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In this study, we analyzed eight batch-based methods observing that the main difference among these methods is
whether or not significant data distribution changes are monitored on the entire arriving batch or only on a selected
instance set. We also analyzed eight online-based methods. This group is subcategorized into two types according to the
way they compare the two windows involved when detecting drift, called as reference window and detection window.
One group differs from the other according to using fixed or sliding reference windows to detect concept drift. Future
work may focus on extending this preliminary study to evaluate and compare highlighted methods by carrying out
computational experiments as was done in Barros and Santos (2018) for supervised drift detectors.
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