DOES THE SIZE OF THE TREES DETERMINE THE RICHNESS AND DISTRIBUTION OF VASCULAR EPIPHYTES IN AMAZONIAN FLOODPLAIN FORESTS?

Adriano Costa Quaresma¹, Yuri Oliveira Feitosa¹, Florian Wittmann¹,², Jochen Schöngart¹, Layon Oreste Demarchi¹ & Maria Teresa Fernandez Piedade¹

¹Instituto Nacional de Pesquisas da Amazônia, Grupo MAUA. Av. André Araújo, 2936, CEP: 69067-375, Manaus, AM, Brazil.
²Karlsruhe Institute of Technology, Institute of Geography and Geocology, Department of Wetland Ecology, Kaiserstr, 12 Building 10.50, 76131, Karlsruhe, Germany.

E-mails: acq.quaresma@gmail.com (*corresponding author); yfeitosa@gmail.com; F-Wittmann@web.de; jschongart@gmail.com; layon.lod@gmail.com; maua.manaus@gmail.com

Abstract: Vascular epiphytes (VE) are among the most threatened group of plants due to the extraction of trees (phorophytes). Yet, surveys and ecological information on vascular epiphytes are rather scarce particularly in wetlands. To understand the effect of tree assemblage on the occurrence of VE and in order to elucidate ecological patterns of distribution and composition, 16 (25 x 25 m) permanent plots were sampled in an oligotrophic floodplain forest (igapó - PELD MAUA) and compared to the same amount and size of plots in a nutrient-rich floodplain (várzea - RDS Mamirauá), both in Central Amazon. All trees and associated VE were counted and identified. The diversity in várzea is driven by the turnover of epiphytes in trees with different diameters, while in igapó there is a pronounced concentration of VE in trees with smaller diameters. Conservation actions in várzea forests should prioritize the maintenance of forest structure, sustaining taxonomic diversity in all diameter classes of trees. In igapó forests efforts to conserve epiphytes must first consider the taxonomic identity and, after, size of trees in the community. The comparison of our results with those of other PELDs in wetlands and other ecosystems will enhance our knowledge on the biogeographic patterns and constrains on the distribution of this important botanical component.

Keywords: wetlands; várzea forest; igapó forest; turnover; nestedness.

INTRODUCTION

Ecological knowledge on bioindicator groups in different habitats is fundamental for monitoring biodiversity, to detect threatened species or environments and to guide preventive conservation actions. There were significant advances regarding the factors that structure the patterns of richness and distribution of plant groups in Amazonian upland forests (Pezzini et al. 2012), which is essential for long term ecological monitoring (Tundisi 2013). However, in Amazonian wetlands such advances occurred mostly for tree assemblages (e.g. Ferreira 1997, Wittmann et al. 2002, 2010, Montero et al. 2014). Nevertheless, other plant groups remain poorly known, especially for vascular epiphytes.

The world-wide species count of vascular epiphytes and hemiepiphytes might be greater than 27,600 (Zotz 2013). This group of plants is under severe anthropogenic pressure, as a significant part of its species composition is lost due to selective logging of large trees (Barthlott et
Monitoring the epiphytic component is no trivial task as these plants occupy the forest canopy, making them difficult to sample and survey. This is particularly challenging for wetlands where the inundation (Junk et al. 1989) pulse adds up methodological complexity to surveys, given the shifting in water levels between dry and rainy season. Notwithstanding, it is known that trees with greater diameters support more diversity and abundance of epiphytes (Callaway et al. 2002, Hietz & Hietz-Seifert 1995, Flores-Palacios & Garcia-Franco 2006, Wolf et al. 2009). This normally occurs because larger trees have more surface and, in most cases, more time available for colonization by epiphytes (Gentry & Dodson 1987, Benzing 1990, Wagner et al. 2015). Still, this relationship can not be generalized for all environments because some studies did not find a positive relationship between tree diameter and epiphyte richness and abundance (Köster et al. 2009, Kersten et al. 2009).

Analysing the tree diameters in Amazonian wetlands might elucidate patterns of distribution and richness of epiphytes along time, assuming that, in most cases, the diameter is a proxy of the time of establishment of a tree (Schöngart et al. 2005). In an area nearby the Surumori River (a blackwater river), Colombia, Nieder et al. (2000) sampled 139 trees and observed that 56 trees with DBH > 20 cm hosted 57 % of all epiphytic individuals. On the other hand, 83 trees with DBH < 20 cm supported 43 % of the epiphytic individuals, corroborating that the time of establishment of the phorophyte is important to the colonization by epiphytes. Therefore, emphasizing the maintenance of large trees in floodplains.

White-Water várzea forests and black-water igapó forests (sensu Prance 1979) comprise an extension of more than 750,000 Km² of the Amazon Basin (Melack & Hess 2010, Wittmann & Junk 2016), these are the most representative wetland ecosystems of this biome. Both forests are subjected to an annual predictable monomodal inundation pulse, which determines most the patterns of distribution and diversity of trees (Junk et al. 1989, Wittmann et al. 2010, Junk et al. 2011) and vascular epiphytes (Quaresma et al. 2018). However, várzeas and igapós differ in their chemistry and geology of their floodplains, várzeas have greater fertility than igapós. This translates into a great floristic difference on the assemblage of trees of these two ecosystems (Junk et al. 2011) and likely influences the epiphyte floristic diversity as well (Quaresma et al. 2017). The quantity of tree species with DBH ≥ 10 cm is greater in várzeas (up to 150 species per ha) when compared to igapós (up to 80 species per ha; Wittmann et al. 2006, Montero et al. 2014). In addition, the arboreal floristic similarity between the two types of forests is less than 20 % (Wittmann et al. 2006, Wittmann 2012). Trees in igapó forests grow 2 to 3 times slower than in várzeas due to the differences in the edaphic conditions of their alluvial soil (Schöngart et al. 2006). In Central Amazon the richness of epiphytes is also higher in várzeas (73 species) than in igapó (37 species) and the similarity between these two environments is only 15.6 % (Quaresma et al. 2017).

Differences in the diversity between these two ecosystems might be driven by two distinct processes or by a combination of those (Baselga 2010). The first consists in a change of species between two assemblages (species turnover), and the second occurs when just a small set of species from the poorer environment constitutes a subset of species present in the richer environment (nestedness) (Baselga 2010, Ulrich & Gottelli 2007). Turnover and nestedness have been documented as processes that promote beta diversity in tropical arboreal assemblages (e.g. Pitman et al. 2002, Condit et al. 2013, Esquiv-Muelbert et al. 2016). To our knowledge these aspects are still to be studied for the assemblages of other associated plants, especially for vascular epiphytes. Differentiating these processes is essential for improving our understanding of epiphyte ecology, biogeography and will help to solve matters on species conservation, like to prioritize conservation units in richer sites (Baselga 2010).

Processes that regulate the diversity of the epiphytic component and their relationship phorophyte age are poorly known for Amazonian wetlands (Quaresma et al. 2018). In order to fill this gap, we investigated the influence of tree diameter (as a proxy of age) on the richness, abundance and distribution of vascular epiphytes. In addition, we studied the effect of turnover and nestedness processes between várzea and igapó (i.e., beta diversity) as well as inside each forest (i.e., alpha diversity). Specifically, we aimed to answer the following questions: I) There is a...
positive relationship between diameter to richness and abundance? II) What is the structure of the alpha and beta diversities of vascular epiphytes in wetlands?

MATERIAL AND METHODS

Study area

Our field research was conducted in an igapó forest of the Jaú National Park (Parna) in permanent plots of Long-Term Ecological Research Program - PELD MAUA, and in an várzea forest in the Mamirauá Reserve of Sustainable Development (RDS) (Figure 1). The Jaú Parna is located between the towns of Novo Airão and Barcelos, 220 km from the Manaus (Capital of Amazonas State, Northern Brazil). The Mamirauá RDS is set in Central Amazon, about 70 km away from the town of Tefé (Amazonas State). Mamirauá and Amanã RDS's (Central Amazon Conservation Complex) were declared Natural Heritage of Humanity by UNESCO in 2000.

The Jaú Parna has an extension of about 2,272,000 ha and covers the basins of the Jaú and Unini Rivers, tributaries of the Negro River's right margin (Ferreira 2000). Meanwhile, the Mamirauá RDS extends through 1,240,000 ha and is delimited by the Japurá and Amazon Rivers, and by the Auati-Paraná channel (Plano de Gestão 2010). Both sites have a tropical humid climate. The mean annual temperature is close to 26.7 °C, mean annual rainfall is 2,300 mm, the dry season goes from June to September and the rainy period from December to May (Ayres 1993, Ferreira, 2000).

The study areas are subjects to a monomodal inundation pulse, the mean annual amplitude in the Jaú Parna is 8.3 m (Junk et al. 2015) and 10.8 m in the Mamirauá RDS (Junk et al. 2012). The highest waters in both forests occurs in the second fortnight of June and the lowest in early November (Junk et al. 2012, 2015).

Data collection

We conducted three field expeditions to each field site between 2014 and 2016 as part of the PELD MAUA project. The first two, in June and July 2014 (highwater period), aimed to recognize field sites and for collecting epiphytes and botanic samples of trees (fertile and unfertile). The remaining four expeditions were carried out in September 2014, January and September of 2015, and September 2016 (low water period). We demarcated 16 25 x 25 m plots in each site, sampling 2 ha in total. We only collected data in forests on late stages of succession (see Wittmann et al. 2002, Junk et al. 2015).

![Figure 1. Location of the study sites: the Jaú National Park and the Mamirauá Reserve of Sustainable Development.](image-url)
Plots were located at least 150 m from each other. Plots across field sites were demarcated in the same inundation level, for example, if plot was demarcated in the igapó at an inundation level of 2.5 m another plot was demarcated at the same level in the várzea forest. These plots were used as sample units in the beta diversity analysis. Inside each plot we sampled, counted and identified all epiphytes, and trees with DBH ≥ 10 cm that hosted vascular epiphytes (phorophytes). We divided phorophytes into five diametric classes (10-20; 20.1-30; 30.1-40; 40.1-50 and > 50.1). Because the number of arboreal individuals differed between the field sites, we homogenized the same number of phorophytes by randomly selecting the same quantity of trees in each class (Table 1).

Epiphyte survey was conducted using binoculars and photographic cameras, always looking on the phorophytes from two distinct angles as to avoid double counting of individual epiphytes. According to Burns (2007), counting from the forest ground captures up 90 % of epiphytes diversity. Nevertheless, Flores-Palacios & Garcia-Franco (2001), verified that counting from the forest ground underestimate the occurrence of several plant species. Therefore, we climbed four or more trees in each plot in order to account for this bias. We usually climbed trees on the four corners of the plot for a more precise data collection.

If possible, we identified the epiphyte and phorophyte species in loco with the help of a parataxonomist experienced in the identification of Amazonian plants. Species that could not be identified in the field were later diagnosed using dichotomic keys, specialized books, comparison with herbarium specimens and/or the help of experts. For the epiphyte species with vegetative reproduction we considered an individual each cluster of plants distinctively isolated (e.g. rosettes (Bromeliaceae), pseudobulbs, stems, rhizomes (Orchidaceae), stem (Araceae and Clusiaceae), and separated colonies (Gesneriaceae and Piperaceae) (Sanford 1968).

Epiphytes with no flowers during surveys were collected and cultivated in green houses until blooming. Specimens that were too small and unidentifiable such as micro-orchids, aroids and piperaceous were not included in the analysis. In our classification we adopted the APGIII (2009), the valid names on the list of species of the Brazilian flora (Lista de Espécies da Flora do Brasil, 2020) and the International Plant Names Index (www.ipni.org, 2015). We held permits for our activities under SISBIO 45538-2.

Data analysis

We plotted a histogram to visualize the distribution of epiphytes abundance and richness across different diametric classes of phorophytes. Then, we used an Analysis of Covariance (ANCOVA) with standardized data using Log10 to evaluate the relationship between the phorophyte diameter and the abundance and richness of epiphytes in the two types of forest (várzea and igapó); with the trees as sample units. To verify how epiphytes are distributed in different diameter classes of the host tree we applied an ordination analysis, using Bray-Curtis distance as a similarity measure. The epiphyte species represented by less than five individuals were excluded from the ANCOVA and ordination analysis for presenting low representation. Finally, we plotted the ordination graph to visualize the

<table>
<thead>
<tr>
<th>DBH Classes</th>
<th>Várzea Phorophyte Species</th>
<th>Várzea Phorophyte Individuals</th>
<th>Igapó Phorophyte Species</th>
<th>Igapó Phorophyte Individuals</th>
</tr>
</thead>
<tbody>
<tr>
<td>10 – 20</td>
<td>36</td>
<td>41</td>
<td>26</td>
<td>41</td>
</tr>
<tr>
<td>21,1 – 30</td>
<td>28</td>
<td>28</td>
<td>17</td>
<td>28</td>
</tr>
<tr>
<td>31,1 – 40</td>
<td>19</td>
<td>19</td>
<td>13</td>
<td>19</td>
</tr>
<tr>
<td>41,1 – 50</td>
<td>20</td>
<td>21</td>
<td>12</td>
<td>21</td>
</tr>
<tr>
<td>> 50</td>
<td>25</td>
<td>16</td>
<td>11</td>
<td>16</td>
</tr>
<tr>
<td>Total</td>
<td>125</td>
<td>125</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 1. Number of species and individual phorophytes in each diametric class, in várzea (Mamirauá RDS) and igapó (Jaú PARNA) forests, Central Amazon.

influence of phorophyte diameter in epiphyte composition of both forests.

We measured the dissimilarity between environments (beta diversity) using the Sørensen distance, because it is well known that this measure incorporates both, true spatial turnover and differences in richness (Koleff et al., 2003, Baselga 2010), and visualized it through a NMDS. In order to verify if dissimilarity of epiphyte assemblages between field sites was driven by nestedness we applied the index proposed by Baselga (2010), which quantifies the degree of nestedness between two communities. The values of this index in each forest were then compared through a NMDS. To verify if the dissimilarity between várzea and igapó was promoted by species turnover we used the Simpson’s index that measures the degree of species substitutions between the two areas (Simpson 1943, Baselga 2010). Similarly, we compared these values using a NMDS. We tested the NMDS significance by ANOSIM analyses, which calculates a ratio between within-group and between-group dissimilarities. The process which leads to a greater dissimilarity between assemblages is the one that better explains the beta diversity pattern (Baselga 2010, Baselga & Orme, 2012).

All analyses were conducted in R version 3.5.2 (R Development Core Team 2011). The similarity distances were calculated using the package betapart (Baselga 2012). Ordinations of epiphytes by DBH were developed using generic scripts. The metaMDS, ANOSIM, and ANCOVA analysis were performed using the vegan package (Oksanen et al. 2016).

RESULTS

In the várzea forest we observed 132 species of phorophytes, on which we found 2968 individuals of vascular epiphytes belonging to 96 species. Twenty species of phorophytes supported 69.5 % of individuals and 63.4 % of all epiphyte species in this environment (Table 2). In the igapó forest we identified 111 species of phorophytes, and 653 individuals of epiphytes classified into 37 species. Twenty phorophyte species hosted 72.8 % of individuals and 67 % of the species of epiphytes in this site (Table 2).

Table 2. Twenty main phorophytes and their related richness and abundance of vascular epiphytes. RE – Richness of epiphytes; AE – Abundance of epiphytes; NIH – Number of those single trees with vascular epiphytes. Host trees were ordered according to the associated epiphytes richness.

<table>
<thead>
<tr>
<th>Várzea’s Phorophyte Species</th>
<th>RE</th>
<th>AE</th>
<th>NIH</th>
<th>Igapó’s Phorophyte Species</th>
<th>RE</th>
<th>AE</th>
<th>NIH</th>
</tr>
</thead>
<tbody>
<tr>
<td>Leopoldinia pulchra Mart.</td>
<td>11</td>
<td>52</td>
<td>49</td>
<td>Chrysoxyllum argenteum Jacq.</td>
<td>24</td>
<td>184</td>
<td>06</td>
</tr>
<tr>
<td>Erythroxylum spruceanum Peyr.</td>
<td>11</td>
<td>34</td>
<td>06</td>
<td>Pouteria sp.</td>
<td>21</td>
<td>182</td>
<td>04</td>
</tr>
<tr>
<td>Macrolobiumacaciifolium (Benth.) Benth.</td>
<td>09</td>
<td>62</td>
<td>07</td>
<td>Tapura guianensis Aubl.</td>
<td>20</td>
<td>201</td>
<td>02</td>
</tr>
<tr>
<td>Aldina latifolia Spruce ex Benth.</td>
<td>08</td>
<td>70</td>
<td>04</td>
<td>Eschweileria parviflora (Aubl.) Miers</td>
<td>19</td>
<td>193</td>
<td>02</td>
</tr>
<tr>
<td>Amanoa oblongifolia Müll. Arg.</td>
<td>07</td>
<td>11</td>
<td>07</td>
<td>Hura crepitans L.</td>
<td>19</td>
<td>128</td>
<td>03</td>
</tr>
<tr>
<td>Pouteria elegans (A.DC.) Baehni</td>
<td>06</td>
<td>23</td>
<td>05</td>
<td>Maquira coriacea (H.Karst.) C.C. Berg</td>
<td>16</td>
<td>109</td>
<td>01</td>
</tr>
<tr>
<td>Diospyros vestita Benoist</td>
<td>06</td>
<td>33</td>
<td>05</td>
<td>Piranhea trifoliata Baill.</td>
<td>13</td>
<td>68</td>
<td>07</td>
</tr>
<tr>
<td>Swartzia polyphylla DC.</td>
<td>06</td>
<td>19</td>
<td>05</td>
<td>Pouteria elegans (A.DC.) Baehni</td>
<td>13</td>
<td>76</td>
<td>11</td>
</tr>
<tr>
<td>Tachigali sp.</td>
<td>05</td>
<td>53</td>
<td>12</td>
<td>Handroanthus barbatus (E.Mey.) Mattos</td>
<td>13</td>
<td>92</td>
<td>07</td>
</tr>
<tr>
<td>Hevea spruceana (Benth.) Müll. Arg.</td>
<td>05</td>
<td>11</td>
<td>04</td>
<td>Tapura juruana (Ule) Rizzini</td>
<td>12</td>
<td>37</td>
<td>01</td>
</tr>
</tbody>
</table>

Table 1. Continue on next page...
Table 1. ...Continued

<table>
<thead>
<tr>
<th>Várzea’s Phorophyte Species</th>
<th>RE</th>
<th>AE</th>
<th>NIH</th>
<th>Igapó’s Phorophyte Species</th>
<th>RE</th>
<th>AE</th>
<th>NIH</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hydrochorea marginata (Benth.) Barneby & J.W. Grimes</td>
<td>05</td>
<td>08</td>
<td>01</td>
<td>Discocarpus essequeboensis Klotzsch</td>
<td>11</td>
<td>28</td>
<td>02</td>
</tr>
<tr>
<td>Ternstroemia caudalosa Wawra</td>
<td>04</td>
<td>28</td>
<td>05</td>
<td>Eschweilera ovalifolia (DC.) Nied.</td>
<td>10</td>
<td>36</td>
<td>04</td>
</tr>
<tr>
<td>Micropholis humboldtiana (Roem. & Schult.)</td>
<td>04</td>
<td>49</td>
<td>03</td>
<td>Micropholis egensis (A.DC.) Pierre</td>
<td>10</td>
<td>39</td>
<td>02</td>
</tr>
<tr>
<td>Eugenia latifolia Aubl.</td>
<td>04</td>
<td>04</td>
<td>02</td>
<td>Cedrela odorata L.</td>
<td>09</td>
<td>59</td>
<td>02</td>
</tr>
<tr>
<td>Licania apetala (E.Mey.) Fritsch</td>
<td>03</td>
<td>04</td>
<td>03</td>
<td>Oxandra riedeliana R.E.Fr.</td>
<td>09</td>
<td>32</td>
<td>03</td>
</tr>
<tr>
<td>Ormosia excelsa Benth.</td>
<td>03</td>
<td>03</td>
<td>03</td>
<td>Glycidendrum sp.</td>
<td>08</td>
<td>19</td>
<td>01</td>
</tr>
<tr>
<td>Leptolobium nitens Vogel</td>
<td>03</td>
<td>05</td>
<td>01</td>
<td>Ocoteacym barum Kunth</td>
<td>08</td>
<td>22</td>
<td>02</td>
</tr>
<tr>
<td>Couepia sp.</td>
<td>03</td>
<td>05</td>
<td>01</td>
<td>Attalea phalerata Mart. Ex Spreng.</td>
<td>07</td>
<td>49</td>
<td>07</td>
</tr>
<tr>
<td>Miconia pubipetala Miq.</td>
<td>03</td>
<td>03</td>
<td>01</td>
<td>Cordia sp.</td>
<td>07</td>
<td>11</td>
<td>01</td>
</tr>
<tr>
<td>Andira micrantha Ducke</td>
<td>02</td>
<td>05</td>
<td>02</td>
<td>Coussapoa nítida Miq.</td>
<td>07</td>
<td>11</td>
<td>02</td>
</tr>
</tbody>
</table>

In both sites we found more phorophytes (36%) in the minor diametric class (10-20 cm) in comparison with phorophytes with larger diameters (12.8% in > 50 cm in diameter; see Table 1). In várzea, the richness and abundance of epiphytes was higher in phorophytes with larger diameters, even though there were less individuals observed in this class. Meanwhile, in igapó epiphytes were more abundant and richer in phorophytes with smaller diameters (Figure 2). This pattern was confirmed by the ANCOVA which revealed that phorophyte diameter influences positively the richness and abundance of epiphytes in the várzea forest (R² = 0.23, p = 0.00001 and R² = 0.17, p = 0.0001; Figs. 3C and 3D respectively), but not in the igapó forest (R² = 0.04, p = 0.5 and R² = 0.02, p = 0.1; Figs. 3A and 3B respectively).

In each environment, the patterns of alpha diversity were driven by the diameter of the host tree. In the várzea forest, there is a species turnover across diameter classes. In the igapó forest the species that occur in larger diameters are a subset of species present in smaller diameters (Fig. 4). Beta diversity between várzea and igapó is mainly structured by the species turnover rather than nestedness (Fig. 5-B e 5-C).

DISCUSSION

Our results for várzea forests support the hypothesis that more epiphyte species are found in trees with bigger diameters. Larger trees, possibly the older ones (Schöngart et al. 2005, Schöngart 2008), play a key role on the richness and composition of epiphytes in várzea forest, and this was also reported in studies conducted in different environments (Johanson 1974, Hietz & Hietz-Seiferd 1995, Callaway et al. 2002, Zott & Volrath 2003, Flores-Palacios & Garcia-Franco 2006, Wolf et al. 2009, Wang et al. 2017). Nevertheless, this hypothesis was not supported by the results for the igapó forest, where the diameter of trees did not influence the richness and composition of epiphytes. In the present study, the diameter of phorophytes varies greatly among species in the same environment and between different ones. Considering that trees in igapós grow 2-3 times slower than in várzeas the contrast among phorophyte diameters between environments is even more pronounced.

In igapó forests trees might reach an old age maintaining a reduced diameter. This increases the time that a tree can serve as substratum and its availability for colonization. Schöngart et al. (2005) used dendrochronological analysis to study the tree Macrolobium acaciifolium in várzea and igapó forests. These authors observed that trees with similar diameters presented pronounced age difference, 500 years in igapó, while no individuals had more than 200 years in várzea. Moreover, trees in igapó forests are not “good hosts”, because only
Do trees influence vascular epiphytes?

Figure 2. Histogram of the relationship of richness and abundance of vascular epiphytes with the distribution of the number of tree individuals by diameter classes. Richness, abundance and number of trees were standardized by Log10.

Figure 3. Influence of tree diameter on the richness and abundance of vascular epiphytes, using phorophytes as sample units. The increase in diameter promotes higher epiphyte richness and abundance in the várzea forest (Fig. 3C and 3D). No significant correlations were found in the igapó forest. Richness and abundance were standardized by Log10.
Figure 4. Ordination graph displaying distribution patterns of vascular epiphytes across diametric classes of phorophytes in várzea and igapó forests. Várzea presented species turnover along diameter classes, while igapó presented nestedness of epiphytes in trees with smaller diameters.

24.9% of the individuals and 53% of the tree species were colonized to epiphytes (Quaresma et al. 2018). Also, some epiphyte species show preference for certain phorophytes (13 species, 11.7%; Quaresma et al. 2018), which makes the preferred colonization pattern more important than phorophyte diameter.

The species turnover in várzea is possibly correlated with light gradients, variations in relative air humidity and canopy temperature. Therefore, epiphytes with adaptations to colonize substratum with different establishment times and/or tolerate adverse conditions tend to form groups with different occupation strategies. This is evident in our results for várzea, where ferns (e.g. A. serratum, A. angustifolium and P. barrosoano), that tolerate shadows and demand high humidity (Pouig 2008, Andrade & Nobel 1997), and hemiepiphytes, that depend on the soil after fixation secondary roots (Zotz 2013), colonized trees with smaller diameters and, likely, with unconsolidated substratum, given they are trees in development. On the other hand, species that tolerate desiccation by wind or sunlight (e.g. S. spiculifera, T. tenuifolium and C. uncata), occupied large trees, likely with a firm substratum, as they are older trees (Schimper 1888, Benzing 1990). Finally, generalist species with fast growth, able to colonize recent substrata such as smaller trees, occurred in all the range of diameters and are abundant in the studied várzea forest.

Meanwhile, the canopy of igapó forests is less tall and less stratified in comparison with upland forests, resulting in more homogeneous conditions of microclimate, which is usually drier (Resende et al. 2014, Almeida et al. 2016) and likely drier than várzeas as well (Resende et al. 2014, Almeida et al. 2016). Epiphytes in igapós also have preference for certain species of trees like L. apetala, A. latifolia, S. polyphylla, T. caudalosa, E. spruceanum, Tachigali sp., D. vestita, M. humboldiana, P. elegans, H. spruceana, A. oblongifolia and M. acaciifolium (Quaresma et al. 2018). We verified that most of these arboreal species belong to minor diameter classes. Thus, nestedness in trees is likely an artefact of differential colonization by vascular epiphytes; on preferred species of phorophytes or due to the environment structure itself.

The spatial species turnover has been previously observed for tree assemblages in tropical forests (Pitman et al. 2002, Tuomisto et al. 2003, Engelbrecht et al. 2007, Condit et al. 2013).
Do trees influence vascular epiphytes?

Figure 5. Non-metrical multidimensional scaling (NMDS) using three measures of distance to evaluate differences in the vascular epiphyte composition between várzea and igapó forests. The (A) graph shows the separation of sampling units by the distance of Sørensen’s. (B) shows that this separation is not by a standard nested pattern, and (C) indicates the species turnover between forests, using Simpson’s distance. Significance was carried out using ANOSIM analysis. **p-value < 0.005.

epiphytes in a regional scale, was demonstrated that this pattern seems to be driven by an altitudinal gradient (Kuper et al. 2004). As our study area has similar pluviometric indexes (2330 mm/year), our results are in accordance with what was reported for the regional arboreal flora. In a larger (neotropical) scale, rainfall has great influence over the distribution of arboreal species (Muelbert et al. 2016). The occurrence of tree species is physiologically limited towards drier environments, leading to species nestedness in forests with higher rainfall (Muelbert et al. 2016). Because epiphytes are strongly limited by rainfall (Benzing 1990, Zotz 2016), we believe that species nestedness is the process that explains the beta diversity patterns in a broader geographical scale.

Previous studies have shown that species turnover might occur due to species selection by the environment, interspecific interactions or historical restrictions (Quian et al. 2005, Baselga 2008). Non-random interspecific interactions between epiphytes and their host trees might explain the turnover pattern between igapó and várzea. Preferred selection of trees by epiphytes has been previously documented (Burns & Zotz, 2010). Due to the little similarity between the composition of tree species from igapó and várzea (Wittmann 2012), the species turnover might be the predominant mechanism, with epiphytes occurring accordingly to singularities of arboreal assemblages in each environment.

The diameter of the phorophyte, and possibly the time it has been available for colonization, positively influence the richness, abundance and the distribution of epiphytes composition in várzea. In igapó forests, the diameter was not a predictor of the richness, abundance and distribution of epiphytes. This difference must be addressed by survey methods. In várzea, the diameter can be used as a proxy to observe changes of richness and composition of epiphyte species along time, because there is a strong relationship between age and growth. Nonetheless, in igapós we suggest that surveys must be directed to some arboreal species that are the preferred sites for epiphytes. This knowledge can assist long-term monitoring projects by directing them to tree species that have greater richness and abundance of epiphytes in these wetland ecosystems.

This is the first time a distinction is made between turnover and nestedness processes for vascular epiphytes in a local and regional scale of the Amazon region. For conservation purposes, the distinction between species distribution process is essential, since they are distinct from each other (Baselga 2010). Conservation efforts should also take into account the difference between igapó and várzea forests. Even though both forest floodplains are subject to similar rainfall and flood pulses, the patterns that structure epiphytic communities in
our study sites have proved to be very different, with important conservation implications. While in the **várzeas** the maintenance of larger tree species, target of logging, is essential for epiphytic communities, in **igapós** all the diametric classes are of great importance and must be maintained.

Understanding how the floristic composition of epiphytes is distributed along their phorophytes is fundamental to direct future long-term monitoring work focusing on tree species that are key-phorophytes for the composition and diversity of epiphytes. These tree species should be chosen as priority sites following taxonomic and diameter criteria. Additional long-term monitoring can confirm important patterns of distribution and diversity of epiphytes presented in this study and help to predict alterations resulting from deforestation and changes in the hydrological cycle in Amazonian floodplains. In addition, considering that several of the PELD sites are in wetlands, our results point to the relevance of encouraging studies in other ecosystems, to broaden our understanding of the important epiphytic component on a national scale.

ACKNOWLEDGEMENTS

We acknowledge the Dr. Maria de Lourdes Soares for help in aroids identification, the Dr. Ana Kelly Koch for helping in Orchidaceae identification, the Dr. Micheline Silva for helping in Piperaceae identification, the Ms Gabriel Emiliano for help in identification Gesneriaceae and to Ms Sebastião Maciel for help in identification Pteridophytes. The CAPES for a Doctorate scholarship to the first author, the ICMBio and Instituto Mamirauá for logistical support, the CNPq and FAPEAM for funding through the project PELD/MAUA Áreas Úmidas (CNPq/CAPES/FAPS/BC, NEWTON PROGRAM FUND); Grant Number: 441590/2016-0), the project Rede Ripária (MCTI/CNPq nº 23/2017; Grant numbers: 441498/2017-5 and 441462/2017-0), and the Support Program for Doctors fixing in Amazonas (FIXAM/AM; Grant Number: 005/2018).

REFERENCES

ter Steege H, Pitman NC, Phillips OL, Chave
Do trees influence vascular epiphytes?

Submitted: 24 August 2019
Accepted: 17 February 2020
Published on line: 15 June 2020
Associate Editors: Camila Barros and Nuria Pistón