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Introduction

Abstract

In general, insect herbivore diversity is positively correlated to plant diver-
sity since plant assemblages structure different microhabitats and provide
food resources for such insects. Although poorly studied, insect herbivores
in tropical dry forests are positively affected by tree species richness and
the structural architecture of vegetation. In this study, we analyzed wheth-
er true weevil and woody plants present similar patterns of diversity
across different landscape units in a Neotropical tropical dry forests locat-
ed in Brazil, and if there is a correlation among their assemblages. We used
Hill numbers according to species richness and the inverse of Simpson to
compare the taxonomic diversity of true weevils and plants in nine land-
scape units located at the S&o Francisco river basin in the states of Sergipe
and Alagoas, north-eastern Brazil. All trees and shrubs with diameter at
breast height (1.3 m) > 5 cm were sampled, and true weevils were collect-
ed using a modified Malaise trap. We used co-correspondence analysis to
test if plants and true weevil species tend to co-occur. A total of 538 true
weevils from 60 species was collected, and a total of 1419 plants belonging
to 49 species was recorded. There is no general pattern of co-occurrence
and diversity among true weevils and plants, indicating that the plant
community is not structuring true weevil assemblage in the Caatinga.
However, there was positive relationship between Sibinia sp4 and
Fabaceae—Mimosoideae. These results suggest true weevil-plant relation-
ships in the Caatinga differ from that of more mesic ecosystems.
Therefore, we observed that the mechanisms that regulate herbivore—
plant diversity relationships do not always follow a positive relationship,
as observed in previous studies.

diverse herbivorous communities (Hutchinson 1959, Ebeling
et al 2017b). Furthermore, the increase in heterogeneity of

Plant diversity is expected to be positively related to insect
herbivore diversity (Haddad et al 2009), with theoretical and
empirical studies supporting this pattern (Haddad et al 2009,
Ebeling et al 2017a). The Resource Specialization Hypothesis,
for example, suggests a diverse plant community may pro-
vide a greater diversity of food resources, thus resulting in
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the structural architecture of vegetation may also provide
more microhabitats, positively affecting herbivorous diversi-
ty (Denno & Roderick 1991, Joern & Laws 2013). Habitats with
a wide microhabitat availability may benefit from specific
environmental conditions that may be absent in habitats
with low heterogeneity.
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Tropical dry forests (TDFs) comprise approximately 40%
of the tropical forests of the world (Brown & Lugo 1982). Like
other ecosystems, herbivore insects in TDFs are positively
affected by tree species richness and the structural architec-
ture of vegetation (Cuevas-Reyes et al 2004, Leal et al
2016, Silva et al 2016). Likewise, herbivore insects pres-
ent specific adaptations to inhabit dry environments
(Cuevas-Reyes et al 2004, Leal et al 2016, Silva et al
2016, Silva et al 2017). For example, Cuevas-Reyes et al
(2004) found herbivore insects preferred to occupy drier
areas of a TDF in Mexico. A similar pattern occurs in TDFs
of Brazil, with high activity of herbivores in more xeric
environments, proving that soil and vegetation composi-
tion may affect herbivore distribution (Silva et al 2016,
Silva et al 2017). However, most TDFs are still poorly
studied when compared to tropical rainforests and sav-
annas (Silva et al 2018). With more studies analyzing the
relationship between plant—insect diversities in TDFs, a
wider perspective may be obtained regarding such inter-
active networks. Therefore, it is possible to reinforce the
trends that have been already observed in the scarce
studies conducted in TDFs, or to present contrasting eco-
logical responses regarding plant—insect relationships in
this biome.

Among the TDFs, the Brazilian Caatinga is the largest,
comprising a wide variety of ecosystems (Andrade-Lima
1981, Silva et al 2018). The Caatinga is a mosaic of TDFs,
comprising plants with a discontinuous canopy that is vari-
able in height and density, thus resulting in heterogeneous
habitats (Velloso et al 2002, Santos et al 2012). The plant
community of the Caatinga mainly includes species from
Fabaceae, Euphorbiaceae, and Myrtaceae (Rodal &
Nascimento 2006, Barbosa et al 2007). Studies regarding
the interaction between plants and herbivorous insects in
the Caatinga are still incipient, focusing mainly on monospe-
cific interactions with plants (Silva et al 2009, Sousa-Souto
et al 2018) and gall-inducing insects (Santos et al 2011 Brito
et al 2018).

True weevils (Coleoptera: Curculionidae) are a diverse
herbivorous group, comprising ca. 51,000 species, with its
higher species richness being recorded mainly in the tropics
(Oberprieler et al 2014). Among ecological studies comprising
Coleoptera diversity in tropical ecosystems, true weevils fea-
ture as one of the most diverse herbivorous (lannuzzi et al
2003, Guedes et al 2019, Macedo-Reis et al 2019, Marquez
et al 2019). True weevils feed on various plant organs, such as
seeds, roots, leaves, and pollen, overcoming the structural
and chemical defenses of plants (Anderson 1993, Oberprieler
et al 2007). Most of them are diet specialists, and true weevil
diversity is highly dependent on plant diversity and compo-
sition (Stoner & Joern 2004, Brown & Hyman 1986).
Furthermore, habitat structure, which is related to plant
community structure, also affects true weevil distribution
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(Chown 1989, Suominen et al 2003, Meurer et al 2013). In
Pantanal, a Neotropical wetland ecosystem, true weevils
were more diverse in forested habitats that recorded high
litter volume, and this trend related to the higher food avail-
ability under forested habitats (Meurer et al 2013).

In dry environments, there are true weevil species highly
adapted and are well succeeded under harsh environmental
conditions. For example, some species of the Curculioninae
present a wide niche breadth and feed on arid-adapted
plants, as the species of the genus Opuntia Mill.
(Cactaceae) (Anderson 1993). On the other hand, species
are strongly influenced by the blooming flower density
(Stoner & Joern 2004). Based on the Resource
Specialization Hypothesis (Hutchinson 1959, Ebeling et al
2017b), the true weevil community will respond to different
physiognomies of the Caatinga. We can expect a positive
relationship between diversity of both, vegetation and true
weevil. Considering this scenario of relationship, in this study,
we aimed to investigate the diversity patterns to both, true
weevil and plant species across different landscape units
within the region of the Caatinga TDF. Thus, we analyzed
whether true weevil and woody plants present similar pat-
terns of diversity across different landscape units. Besides,
we tested whether true weevil and plant diversities are cor-
related within the Caatinga. This approach may provide the
basis for a better understanding of plant—insect relationships
in dry ecosystems, which have fauna and flora strongly adap-
ted to water scarcity (Haim & Izhaki 1995, Silva et al 2017,
Silva et al 2018). The evolution between plant and insects is
asymmetric, with insects usually following plant evolution;
thus, understanding the relationship between herbivorous
insects and their hosts entails knowledge in ecological inter-
actions between such taxa (Jermy 1984, Strauss & Zangerl
2002). The data provided in this study will give basis for
the understanding of insect population establishment and
dynamics in dry ecosystems.

Material and Methods
Study area

The study was conducted in conserved habitats at the Sao
Francisco river basin (09°30~10°00'S and 37°30'-38°00'W) in
the states of Sergipe and Alagoas, north-eastern Brazil. The
predominant soils of the region are Litolics, Cambisols,
Podzolic, Eutrophic, Noncalcic Brown, and Planosols.
According to the Koppen climate classification, the climate
is defined as hot semi-arid (BSh) (Peel et al 2006). Annual
precipitation and mean annual temperature range from 500
to 600 mm and 25 to 27°C, respectively. This ecoregion of
Caatinga is named “Depressdao Sertaneja Meridional”
(Southern Serteanean Depression) and its vegetation mostly
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comprises shrubs and trees, with Malpighiaceae,
Bignoniaceae, and Euphorbiaceae being some of the com-
mon families of the flora in this region (Velloso et al 2002).

Plant and true weevil surveys

Surveys were performed monthly between March 2000 and
February 2001, within nine landscape units simultaneously,
which differed among them according to the topography, soil
depth and type, and water availability (Guerra 1972, IBGE
2007) (Table 1). In the Caatinga, such environmental param-
eters may influence the community structure of plants (Silva
et al 2003), beetles (lannuzzi et al 2003), and ants (Leal
2003). The habitats analyzed in this study reflect the most
representative environments of the Caatinga domain (see
Silva et al 2003). In each landscape, we surveyed plants
across six randomly distributed plots (10 x100 m), which
were not spatially correlated (Silva et al 2003). All trees
and shrubs with diameter at breast height (1.3 m) > 5 cm
were sampled in each plot and identified following the
Angiosperm Phylogeny Group (APG3) system. In the same
plots where plants were surveyed, the true weevils were
collected using modified Malaise traps, being installed one
trap in each plot. Malaise is a passive trap based on flight
interception, commonly used as the standard method for
sampling flying insects (Sheikh et al 2016) and this method
samples a vast assortment of beetle taxa, including
Curculionidae which is one of the dominant families
(lannuzzi et al 2003, Skvarla and Dowling 2017, Guedes
et al 2019). The traps were mounted at clearings and natural
trails, avoiding to install them near specific plant species. As
sampling was performed throughout the year, we could not
use each plot as a replicate, owing to effects of seasonality
over insects of the Caatinga (Vasconcellos et al 2010).
Therefore, we had only one replicate for each landscape unit,
and thus, we considered the absolute number of individuals
in each landscape unit for diversity measures and statistical
analyses. The true weevils were identified with the assistance
of the specialist Dr. Germano Rosado Neto (Federal

University of Parana — UFPR). The voucher specimens are
deposited at Entomology Collection of Federal University of
Pernambuco (UFPE) and plants voucher are at UFP
Herbarium (Recife, Pernambuco, Brazil).

Data analyses

We assessed sampling efficiency of true weevil and plant
species in the studied landscape units of the Caatinga using
the estimators of species richness Jackknife 1, Jackknife 2,
Chao 1, and Chao 2. The estimators were performed based
on the number of samples (i.e., number of landscape units).
These analyses were performed using Estimates version 9.1.0
(Colwell 2013).

For each landscape unit, we calculated the Hill numbers
with g =0 and g = 2, which can be interpreted as richness and
the Simpson’s index of diversity, respectively (Chao et al
2014). Hill numbers not only obey the replication principle
but also have equivalents in the most used indexes, such as
Simpson’s inverse and Shannon (Chao et al 2014). We com-
pared the richness and Simpson’s diversity index of true wee-
vils and plants among the landscape units with extrapolation
curves based on individual sampling with iNEXT in R version
3.2.0 (Hsieh et al 2016, R Core Team 2018). We considered
the extrapolation until the total abundance of true weevils
and plants in each landscape unit, i.e., 110 and 280, respec-
tively. We also performed ranking abundance figures to un-
derstand the abundance patterns of plant and true weevil
species in each landscape unit.

We tested if the abundance, estimated richness, and esti-
mated Simpson’s index between true weevils and plants were
related among the landscape units with Pearson’s correlation
analysis. All diversity measures were normally distributed
(Shapiro test, P >0.05). Correlation analysis was performed in
R version 3.2.0 (Hsieh et al 2016, R Core Team 2018). To test if
abundance of Sibinia sp4 and Pappista sp. was affected by
abundance of plant species (Fabaceae—Mimosoideae and
Euphorbiaceae, respectively), we conducted generalized linear
models with correction for overdispersion of Poisson

Table 1 The nine landscape units in the studied area and their soil and topography features.

Abbreviation Description Soil depth Soil type Soil water availability Terrain
FISanB Flat sandy board Deep Sandy Low Flat
RiSanB Riparian sandy board Deep Sandy High Flat
ErForW Erosive formation from water Shallow Vary High Inclined
CoMouR Counterfort mountain range Vary Vary Vary Rough
ScMouR Scarp mountain range Vary Vary Vary Rough
CaOutS Canyons without soils Shallow Not applicable Low Inclined
CaWitS Canyons with soils Deep Vary Low Inclined
RiClaB Riparian clayey board Deep Clayey High Flat
FIClaB Flat clayey board Deep Clayey Low Flat
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distribution (Crawley 2013). Analyses were performed in R ver-
sion 3.2.0 (R Core Team 2018). This relationship was previously
suggested by Clark (1979), as these true weevil species prefer-
entially use the bark and trunk resources of the species from
these plant families. These true weevil species were chosen by
the large number of specimens sampled and by the well-
documented and specific relationship with hosts of both genera
(Clark 1978).

To visualize and interpret true weevil and plant assem-
blage structure, we performed Nonmetric Multidimensional
Scaling (NMDS) with Bray—Curtis distance, which considers
species abundance. To test if the dissimilarity on species as-
semblage differ between plants and weevils, we performed
Mantel test (Legendre & Legendre 2012). To test if plants and
true weevil species tend to co-occur, we performed a co-
correspondence analysis (CoCa). CoCa is an ordination meth-
od to test if two species compositions from the same sam-
pled sites are related. In this method, the “leave-one-out”
cross-validation method is implemented; i.e., partial least
squares regression models are calculated for the number of
sites, wherein with each iteration, a different site is left out.
We used the asymmetric predictive methods, in which the
species composition is predicted in each run and is compared
to the actual data. Owing to its mathematical properties, any
value of cross-validation above zero indicates that the pre-
diction is better than by chance. In addition, we tested if the
differences between models are by chance using the ran-
domization test. The true weevil abundance was log-
transformed to decrease the skewness of the abundance
distribution. For detailed explanation about the CoCa, see
ter Braak & Schaffers (2004). We used the package “cocor-
resp” in R (Simpson 2009) to perform CoCa.

Results

We recorded 538 true weevils belonging to 60 species and 1419
plants belonging to 49 species (Supplementary material). The
mean abundance of true weevils was 59.77 + 23.88 and that of
plants was 159.62 + 55.81 per landscape unit. According to Chao
1and Chao 2, true weevil inventory completeness was 46.30%
and 40.59%, respectively; according to Jackknife 1 and Jackknife
2, true weevil inventory completeness was 64.35% and 50.72%,
respectively. Plant inventory completeness was 87.17% and
79.27%, according to Chao 1 and Chao 2, respectively; according
to Jackknife 1 and Jackknife 2, plant inventory completeness was
79.27% and 70.91%, respectively. The landscape units FICIaB,
FISanB, and ErForW had the highest true weevil abundance,
whereas FICIaB, ScMourR, and FICIaB had the highest plant
abundance (Table 2). The RiClaB had the highest true weevil
estimated species richness, while CoMouR had the highest
plant estimated species richness (Table 2). True weevils had,
on average, 14.89 (+ 3.62) species per landscape unit, whereas
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plants had an average of 15.55 (+ 4.06) species per landscape
unit. The average Simpson’s diversity of true weevils per land-
scape unit was 5.34 + 2.71, whereas for plants, it was 4.14 + 2.5.
The landscape units with the highest estimated Simpson’s di-
versity were CaWitS for true weevils and CaOutS for plants
(Table 2). According to the Simpson’s diversity index, CaWitS,
RiSanB, and RiClaB had a statistically higher true weevil diversity
than the other landscape units. For plant species, CaOutS was
statistically the most diverse landscape unit, based on the
Simpson’s diversity index (Table 2).

Three true weevil species presented a high abundance in
the study (>10% of the total true weevil abundance): Sibinia
sp4 (33% of total true weevil abundance), Naupactus sp3
(11%), and Pappista sp. (11%). More than half of the true
weevil species were singletons. Sibinia sp4 was the dominant
true weevil species in five of the studied landscape units
(RiSanB, ErForW, CaOutS, CaWitS, and FICIaB, see Fig 1A).
Naupactus sp3 was the dominant true weevil species in
FISanB and CoMouR while Pappista sp. was dominant in
ScMourR. Both Pappista sp. and Chalcodermus sp7 were
the dominant true weevils in RiClaB (Fig 1A). Poincianella
pyramidalis (Tul.) L. P. Queiroz was the most abundant plant
species in the studied area, with 3735 individuals (ca. 45% of
the total plants recorded) followed by Aspidosperma
pyrifolium Mart. & Zucc, with 740 individuals (approximately
8%) (Fig 1B). Only eight plant species were singletons (Fig 1B).
Poincianella pyramidalis was the most abundant species in all
landscape units except ErForW, in which the dominant spe-
cies was a Bauhinia sp. (Fig 1B).

The abundance of true weevils and plants was not statisti-
cally related (r=-0.17; P=0.65). Similarly, estimated richness
(r=-0.31; P=0.42) and estimated Simpson diversity (r = - 0.25;
P =0.51) were not related. In addition, there was no significant
relationship between Pappista sp. and Euphorbiaceae plant
species (Fg,=0.09, P=0.77; Table 3) and between
Mimosoidea and Sibinia sp1 (Fg,=2.3, P=0.17; Table 3),
Sibinia sp2 (Fg,=0.01, P=0.9; Table 3), and Sibinia sp3 (Fg;=
0.18, P=0.68; Table 3). However, there was a significant posi-
tive relationship between Sibinia sp4 and the abundance of
Fabaceae-Mimosoideae plant species (Fg,=7.65, P=0.02;
Table 3). According to NMDS and Mantel test, the dissimilarity
in species composition among landscape units was also differ-
ent between true weevils and plants (Fig 2; r=- 0.26; P = 0.96).
Only one axis of predictive CoCa cross-validation was positive,
indicating that all the predictions were lower than by random.
The permutation test confirmed the cross-validation result; i.e.,
all axes, except one, were nonsignificant (Table 4).

Discussion

Although different landscape units can affect plant and true
weevil diversities, both groups responded differently in this
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Abundance (and its percentage in relation to the total), richness, and its percentage in relation to the total, Simpson (1/D), and the estimated richness and Simpson for true weevils and plants

in each landscape unit.

Table 2

Mean * SD

FISanB ErForw CoMouR ScMouR CaOutS CaWitS RiClaB FIClaB Total

RiSanB

True weevil

59.77 * 23.88
14.88 * 3.62

538
60

107 (20%)
12 (20%)

48 (9%) 30 (5%)
16 (26%)

65 (12%)
17 (28%)

46 (8%)
14 (23%)

58 (10%)
15 (25%)

70 (13%)

13 (21%)

79 (14%)
22 (36%)

35 (6%)

9 (15%)

Abundance (%)

(26%)
21.87 (17.04 £ 48.98)

10.20

16

Species richness (%)

13.11 (1212 £ 21.94)

2.54

91.40 (42.32 +232.02)

7.50

52.44 (24.56 £183.17)

2.76

49.22 (24.06 £137.23)

5.75

17.46 (15.39 £30.42)

4.77

21.87 (14.49 * 65.55)

4.20

51.86 (28.22 £165.33)

7.89

26.48 (11.46 £133.38)

252

Estimated richness (Cl 95%)

Simpson

534271

6.71

2.63 (2.51+£3.82) 8.65 (7.89 £11.78) 4.39 (419 5.84) 5.10 (4.76 £7.16) 6.43 (5.75 £ 9.01) 2.84 (2.76 £3.91) 12.67 (10.19 £ 16.54) 9.66 (7.50 £ 20.12) 2.57(2.54+3.24)

Estimated Simpson (Cl 95%)

Plants

159.62 + 55.81

1419
49

181 (12%)
19 (38%)

258 (18%)

14 (28%)

138 (9%)
13 (26%)

77 (5%)

14 (28%)

217 (15%)
13 (26%)

142 (10%)
16 (32%)

169 (12%) 125 (8%)
13 (26%)

25 (51%)

12 (8%)
13 (26%)

Abundance (%)

15.55 * 4.06

Species richness (%)

26.95 (20.68 £ 56.64)

3.75

14.33 (14.02 £18.67)

2.02

15.23 (13.26 £ 31.91)

3.4

16.96 (14.34 +39.12)

9.1

15.24 (13.26 £ 31.96)

2.83

47.77 (20.80 + 226.09)

312

14.1 (13.12 £ 22.95)

4.45

38.42 (27.88 + 87.52)

21.92 (14.50 * 65.82)

235

Estimated richness (Cl 95%)

Simpson

494 * 2.25

3.82

6.30
6.50 (6.29 +8.32)

3.81(3.75 £ 4.56)

3.46 (3.40£4.35) 2.03 (2.02+2.31)

2.84 (2.82+3.40) 10.19 (9.10 +12.55)

3.16 (3.11£3.90)

4.57 (4.45 £ 5.48)

2.38 (2.35+2.98)

Estimated Simpson (Cl 95%)

The estimation was for 107 and 262 individuals of true weevils and plants, respectively, and are based on the most abundant landscape unit. Italic values indicate landscape unit with the highest value.

RiSanB riparian sandy board, FISanB plane sandy board, ErForW ravina, CoMouR counterfort mountain range, ScMouR scarp mountain range, CaOutS canyon without soil, CaWitS canyon with soil,

RiClaB riparian clayey board, FIClaB plane clayey board.

study, resulting in no apparent trend of co-occurrence. For
instance, whereas the highest richness of true weevils was in
the riparian clayey landscape unit (RiClaB), plants had more
species in canyons with soil (CoMouR). The plant and true
weevil species dominance among landscape units also had
no trend. While P. pyramidalis was the most abundant plant
species in almost all landscape units (except in ravines—
ErForW), the dominant true weevil species differed among
the landscape units. Together, these results indicate that,
despite each landscape unit determining the taxonomic di-
versity of woody plants and true weevils, plants diversity
presents no clear relationships with true weevil diversity in
this region of the Caatinga TDF.

Contrary to our expectations, habitat type affected
true weevil and plant species richness and diversity in
different ways, and the landscape units that encom-
passed a more diverse true weevil assemblage were
not the same as those that had a more diverse plant
assemblage. The Resource Specialization Hypothesis sug-
gests that areas with higher plant diversity may favor the
establishment of more diverse insect herbivore fauna
(Hutchinson 1959), which has been proved in previous
empirical studies (Cuevas-Reyes et al 2004, Haddad et
al 2009, Leal et al 2016, Ebeling et al 2017a). Besides
the food resource of insect herbivorous (i.e., plants),
habitat structural complexity and microhabitat availabili-
ty also affect the distribution of such insects (Cuevas-
Reyes et al 2004 Joern & Laws 2013). Our results suggest
habitats with a high plant diversity (potential food
resources) may not promote a diverse assemblage of
true weevils. Given dry ecosystems have harsh climatic
conditions (e.g., elevated temperatures, low air humidi-
ty), the vegetation structure in these landscapes may
promote a stronger effect on insect herbivores than
the food availability by itself. Analyzing arboreal arthro-
pods in Caatinga, Sousa-Souto et al (2014) suggest that
tree identity or vegetation stage as possible main drivers
in insect richness since they found a greater diversity of
insects in environments with less plants diversity. Also,
there are other factors related to vegetal structure like
vegetation cover, plant architecture, and productivity
can apparently be highly influential to insect communi-
ties because they affect directly the amount of resource
on the environment, climate, locomotion, etc. (Allan et al
1975, Schmidt et al 2013 Stinson & Brown 1983).
Therefore, we suggest further studies should aim at un-
derstanding the effects of diversity of food resources and
vegetation structure on insect herbivores in the Caatinga
TDF.

Previous studies found a positive relationship between
plant and true weevil species assemblages (e.g.,
Murdoch et al 1972 Humphrey et al 1999 ter Braak &
Schaffers 2004, Schaffers et al 2008). In arid and semi-
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Fig 1 Ranking abundance plot of true weevils (A) and plants (B) in each landscape unit: FISanB: riparian sandy board; RiSanB: plane sandy board;
ErForW: ravina; CoMouR: counterfort mountain range; ScMourR: scarp mountain range; CaOutS: canyon without soil; CaWitS: canyon with soil;
RiClaB: riparian clayey board; FIClaB: plane clayey board. We only show the most abundant species in each landscape unit: true weevils: Ant1:
Anthonomus sp1; Ara: Aracanthus sp.; Cha 3: Chaldermus sp3; Cha 7: Chaldermus sp7; Cry1: Cryptorhynchini sp1; Nau2: Naupactus sp2; Nau3:
Naupactus sp3; Pap: Pappista sp.: Sib1: Sibinia sp1; Sib2: Sibinia sp2; Sib3: Sibinia sp3; Sib4: Sibinia sp4. Plants: Ana: Anadenanthera colubrina
(Vell.) Brenan; Bau: Bauhinia sp.; Jat: Jatropha molissima (Pohl) Baill.; May: Maytenus rigida Mart.; Mim: Mimosa tenuiflora (Willd.) Poir.; Pip:
Piptadenia stipulacea (Benth.) Ducke; Poi: Poincianella pyramidalis (Tul.) L. P. Queiroz. The relative abundance was log-transformed (base 10).

arid ecosystems, insect herbivores may present adapta-
tions to surpass climatic conditions. For example, in arid
regions of the USA, the herbivore Uroleucon ambrosiae
(Thomas, 1878) (Aphididae, Hemiptera) presents a gener-
alist diet, which is associated with scarce and ephemeral
food availability (Funk & Bernays 2001). Likewise, in a
Brazilian TDF, insect herbivores may feed on specific
plant species that do not lose their leaves during the
dry season (Silva et al 2017). In the studied landscape
units, Sibinia sp4 was the only true weevil species that
had a positive relationship with plant species abundance
(Fabaceae—Mimosoideae). The correlation between
Sibinia and Mimosoideae is known, since the seed of this
plant is the oviposition site to Sibinia species (Clark 1978,

Heard et al 1997). In fact, Mimosoideae species produce
many seeds per plant and in some areas, a large amount
of resource is available to true weevils (Cuevas-Reyes
et al 2004). Based on these results, we suggest there
are true weevil species in the Caatinga which occupy
narrow trophic niches, feeding and developing on specif-
ic plant species.

Based on our results, we can conclude that plant and true
weevil diversity is not affected similarly in different habitats
of the Caatinga dry forest, despite each landscape unit influ-
ences the species composition in both groups. This suggests
the mechanisms that regulate herbivore—plant diversity rela-
tionships do not always follow a positive relationship, as ob-
served in most tropical and temperate ecosystems. By

Table 3 Generalized linear

models with Poisson distribution True weevil Plant Estimate Deviance Deviance residuals F' P
corrected by overdispersion
between true weevil species and Sibinia sp1 Mimosoidea 0.06 10.18 29.64 2.3 0.17
sub-family (Fabaceae- Sibinia sp2 Mimosoidea 0.01 0.05 23.34 0.01 0.9
Mimosoidea) and family Sibinia sp3 Mimosoidea -0.06 1.49 35.94 018 0.68
(Euphorbiaceae) plants. o . .
Sibinia sp4 Mimosoidea 0.08 86.43 83.05 7.65 0.02
Pappista sp. Euphorbiaceae -0.01 0.25 19.17 0.09 0.77

These relationships were previously recorded in previous studies (Clark 1978, Espinelli et al 2016).

* Degrees of freedom of F test were 1 and 7.
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Fig 2 Nonmetric multidimensional scale of species assemblage
dissimilarities of true weevils (A) and plants (B). We used the Bray—
Curtis distance among landscape unit. FISanB: riparian sandy board;
RiSanB: plane sandy board; ErForW: ravina; CoMouR: counterfort

evaluating how other factors regulate herbivore-insect distri-
bution in dry ecosystems, we can improve the knowledge of
diversity dynamics in such harsh environments. Knowing
which factors regulate true weevil distribution, we can infer
about ecological strategies of insects in dry forests, since
herbivorous species tend to prefer a younger environment
devoid of natural defenses. In TDFs, it is possible that specific
plant traits, as being an evergreen species, may play a more

Table 4  Cross-validation fit, percentage of explained variance, and P
value of permutation test of co-correspondence analysis (CoCa) to test if
true weevil assemblage is predicted by plant assemblage.

Cross-validation fit % variance explained P

COCA1 0.58 14.51 o.n

COCA 2 -13.08 8.01 0.97
COCA 3 -28.31 11.80 0.99
COCA 4 -32.91 13.00 0.95
COCA 5 -80.91 10.27 1.00
COCA 6 -335.86 14.61 0.98
COCA 7 -443.4 12.57 0.78
COCA 8 - 44312 12.85 0.02

The number of axes (COCA 1 to 8) is the same of the number of sites.

important role on the distribution of herbivorous insects
than plant diversity itself.
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