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The Neotropics harbor some of the most diversified woody species in the world, and
to understand the nutrient dynamics in these ecosystems, it is crucial to understand
the role of plant taxonomy. In addition, biological nitrogen (N) fixation (BNF) in the
tropics is one of the key processes affecting the global N cycle. Our objective was
to (i) investigate the role of taxonomy and sampling site as predictors of foliar carbon (C)
and N concentration and its stable isotopes (i.e., δ13C and δ15N); (ii) assess differences
in foliar N, C:N ratio, and δ15N among three functional groups: species of N2-fixers and
non-fixers of the Fabaceae family, as well as non-Fabaceae species; and (iii) examine
the effect of wood density on tree foliar properties. We hypothesized that Fabaceae
specimens in symbiosis with N2-fixers would possess a higher foliar N than non-fixing
plants, including those of the Fabaceae family, as well as high-density trees would have
higher foliar C and C:N ratio relative to low-density trees, where the latter invest in
nutrients instead of structural C. We used a data set composed of 3,668 specimens
sampled in three main biomes of Brazil: Amazon, Atlantic Forest, and Cerrado. The
partitioning of variance had a higher influence of taxonomy on leaf C, N, and C:N
ratio. Conversely, foliar δ13C and δ15N were environmentally constrained. While family
was the most important taxonomy level for C, N, and C:N ratio, species played a
major role for δ13C and δ15N. Foliar N followed the pattern fixers > non-fixers > non-
Fabaceae, while C:N ratio had an opposite trend. In addition, foliar C was correlated with
wood density, where high-density > medium-density and low-density woods. The large
variability of δ15N was observed among Fabaceae species, demonstrates the complexity
of using δ15N as an indicator of BNF. The higher foliar N of Fabaceae non-fixers than
non-Fabaceae specimens support the hypothesis that an N-demanding lifestyle is an
inherent pattern in this family. Lastly, although observed in some studies, the prediction
of foliar properties using wood density is challenging, and future research on this topic
is needed.
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INTRODUCTION

The Neotropics harbor one of the most diversified plant and
animal species in the world (Hughes et al., 2013; Ulloa et al.,
2017; Meseguer et al., 2020). Almost 40% of the global seed plant
populations, approximately 100,000 species, are found in this
region (Antonelli and Sanmartín, 2011). Although the reasons for
such richness of life are still debatable, it seems that at regional
to continental level, past geological events affecting the elevation
of the Earth surface (topography) and climate changes (or lack
of them), together with biotic processes, like phylogenetic niche
conservatism, shape the distribution of species in the Neotropics
(Rull, 2011; Cheng et al., 2013; Hughes et al., 2013; Ledo and Colli,
2017; Rangel et al., 2018).

Plant species diversity is also highly controlled by soil
nutrients, from the local to the regional level (Hulshof and
Spasojevic, 2020). In recent years, it has been elucidated
that biodiversity has a pivotal role in ecosystem functioning
(Cardinale et al., 2012; Tilman et al., 2014), which is strongly
regulated by how plants process nutrients, mainly through
biomass accumulation and litterfall (Vitousek and Sanford, 1986).
Therefore, plant biodiversity can increase nutrient cycling and
its acquisition due to the complement effect among species with
varied functional traits, where different spatial and temporal
niches are accessed, decreasing nutrient loss from the system
(Hooper et al., 2005; Oelmann et al., 2011). The rate at which
nutrients will be available to plants also depends on how nitrogen
(N)-rich the vegetal detritus is, since the more N-rich it is, the
faster it decomposes, returning this limiting nutrient quicker
to the soil for subsequent plant uptake (Melillo et al., 1982).
That is the case of Fabaceae family, which usually has higher
foliar N concentration than other families, being a particularly
important botanical family in forests of the tropics (Vitousek
et al., 2002). Some species of this family are also able to establish
symbiosis relations with the bacteria of the genus Rhizobium,
enabling atmospheric N2 fixation, known as biological N fixation
(BNF), one of the key processes in the global N cycle and of high
importance in the tropics (Hedin et al., 2009; Barron et al., 2011;
Cleveland et al., 2011). There are many other plant families that
support symbiotic N fixation. However, Fabaceae are considered
the most important species regarding N acquisition due to their
symbiotic relationship with rhizobia (Valentine et al., 2018).
Potentially, the foliar N isotope ratio (i.e., δ15N) could be used to
estimate BNF in plants, although there are several pitfalls in such
use, especially in woody perennial plants (Boddey et al., 2000).

The uniqueness of the Fabaceae family highlights the
importance of understanding the taxonomy of plant species
and their role on nutrient flow and ecosystem functioning.
Taxonomy-driven variances have been reported as a strong
source of the variation of photosynthetic and structural traits
(Oliveras et al., 2020). Additionally, taxonomy seems to be
more limiting to leaf traits than the environment, showing
the dominance of taxonomic turnover over the environmental
variations (Fyllas et al., 2009; Anderegg et al., 2018; Oliveras
et al., 2020). Many plant traits and associations between traits
have been hypothesized to be under the control of a common
genetic mechanism, reflecting a combination of evolutionary and

community assembly process responding to biotic and abiotic
constraints (Chapin et al., 1993; Vasseur et al., 2012; Oliveras
et al., 2020).

In tropical regions, investigation of foliar carbon (C) and
N concentrations as well as isotopic ratios seems to be
appealing because there is limited evidence suggesting that N
site availability is an important driver of foliar N isotopic ratio
(Högberg, 1997; Martinelli et al., 1999; Schuur and Matson,
2001; Craine et al., 2009). Current scientific understanding state
that N-site availability controls foliar N isotope composition. In
addition, there is an understanding that the canopy C isotope
ratio (i.e., δ13C) is mainly controlled by water availability, in
which stomata tend to stay open longer in sites with higher
water abundance than in the arid ones (Diefendorf et al., 2010;
Basu et al., 2019). Consequently, the internal stomatal CO2
concentration (pi) tends to equilibrate with the atmospheric CO2
(pa), leading to more negative δ13C values related to the plants
in arid sites (Farquhar et al., 1989). Additionally, it is already
established that slow-growing trees are shade-tolerant species,
where water is more available, but the light is more limiting,
leading to leaves with more negative δ13C than fast-growing and
light-demanding species (Farquhar and Sharkey, 1982).

In order to understand the life history of trees and their
mechanical and physiological strategies, wood density can be
an important trait to be considered, since it relates to the
whole-plant performance (Westoby et al., 2002; Swenson and
Enquist, 2007). Low-density species have higher N and lower
C concentrations in comparison with high-density species,
following the well-known “leaf economics spectrum” (LES),
where low-density trees, being short-lived, invest more on
nutrients and less on structural C, while high-density trees, being
long-lived, invest less on nutrients and more on structural C
(Wright et al., 2004). Therefore, wood density also appears to be a
relevant tree trait to unravel the ecosystem functioning, since this
trait is key to determine forest biomass and C (Baker et al., 2004).

As part of the Neotropics, Brazil is the country with the
largest number of vascular plant species (Ulloa et al., 2017),
comprising six major biomes that can be broadly divided into
two major rainforests: Amazon and the Atlantic Forest. These two
rainforests are separated along a northeast–southwest axis by the
Caatinga and Cerrado, representing two major dry areas (Rangel
et al., 2018). Besides the above biomes, there is the Pantanal, one
of the main wetland areas of the Neotropics, and the Pampas, in
the south tip of Brazil, representing the only truly sub-temperate
biome of the country. According to a recent cross-taxonomic
biogeographic analysis, Amazon stands out as the primary source
of diversity in the Neotropics (Antonelli et al., 2018). However, as
recognized by several authors, drier regions such as the Caatinga
and Cerrado also play a vital role in the biodiversity of the country
(Pennington et al., 2009; Antonelli et al., 2018; Rangel et al., 2018).

In a recent study of Martinelli et al. (2020), the foliar δ13C
and δ15N were determined in ∼6,500 tree leaves sampled from
57 sites distributed across all major Brazilian biomes. This
analysis showed that there is a large variation in foliar chemical
properties among vegetation types, demonstrating that parallel
to life diversity, there is also a “biogeochemical diversity,” as
postulated by Townsend et al. (2008). It was also speculated that
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precipitation was the main environmental factor responsible for
such variability. However, the weight of taxonomy in these foliar
properties was not determined and remains poorly understood.
Therefore, our main objective was to determine how much of
the variance in canopy foliar traits is explained by taxonomy
and site characteristics, considering foliar N and C isotopic
ratios, but also on foliar N and C concentrations in a subset
of the database provided by Martinelli et al. (2020), containing
3,668 foliar samples with complete taxonomy (family, genus,
and species) from three major Brazilian biomes, i.e., Amazon,
Atlantic Forest, and Cerrado, including 741 species, distributed
in 298 genera and 81 botanical families. Our special interest in
stable isotopes lies in the fact that there is limited information
regarding taxonomic control on canopy δ13C (Fyllas et al., 2009),
and to the best of our knowledge, this aspect has not yet been
evaluated for canopy δ15N. If our study proves that taxonomy
exerts a major role in determining foliar δ15N, the importance of
N-site availability as a key factor will be challenged. The second
objective of this study was to investigate foliar N concentration,
C:N ratio, and δ15N in specimens of the Fabaceae family and also
compare these parameters among Fabaceae N-fixing, non-fixing,
and non-Fabaceae species of the Brazilian biomes mentioned
above. Finally, we also assessed whether wood density correlates
or not with foliar C and N concentration, as well as the C:N ratio.

MATERIALS AND METHODS

Data Acquisition and Processing
We used a data set compiled by Martinelli et al. (2020) and
available in a public repository at Mendeley1, where C and N
concentration, C:N ratio, and isotopic ratios are available for
each species. Due to the large number of publications present in
this data set (including original data provided by the authors),
the sampling procedure of leaves slightly differed among studies.
First, while several studies used the abundance criteria, sampling
the most common species, others prioritized plant species based
on logistic facilities (Martinelli et al., 2020). Second, most of the
studies followed the protocol of Cornelissen et al. (2003), where
mature, fully expanded, and sunlit leaves found in the middle of
the canopy were sampled. However, in some studies, sampling of
sunlit leaves was constrained by tree height in tropical forests. In
such cases, understory leaves were not included in our subset to
reduce bias regarding 13C composition (Ometto et al., 2006).

Overall, sampled leaves were oven-dried at 60–65◦C to a
constant weight and finely ground in a Wiley mill, and a
subsample was transferred to a tin capsule. Samples were
analyzed for total C and N concentration as well as their isotopic
composition (13C and 15N) in an elemental analyzer interfaced to
an isotope ratio mass spectrometer. C and N concentrations are
expressed in percent, while the stable isotopic ratio in the classical
“δ” notation is expressed according to the following equation
(Craig, 1953):

δnX = (Rsample/Rstandard – 1)× 1,000 (1)

1https://doi.org/10.17632/38npddpnts.1

where X is C or N; n is the mass number of the heavier isotope
(13C or 15N); and Rsample and Rstandard are the isotopic ratio of the
samples and the standard, respectively. The primary standards
were Pee Dee Belemnite for C and atmospheric air for N.

Of a total of ∼6,500 foliar samples, 3,668 had botanical
identification. We used a similar procedure described by Chave
et al. (2006) and by Oliveira et al. (2019). We first compared
species names with the currently accepted names using the R
package “flora” (Carvalho, 2020), with the purpose of correcting
spelling errors and checking species names that have changed.
We found a high number of spelling errors, which seems
to be a recurrent problem in large data sets (Chave et al.,
2006), and a smaller number of invalid species names that
were discarded. This process resulted in a subset composed
of tree foliar samples with accurate botanical classification at
the species level from three major Brazilian biomes (Figure 1
and Supplementary Data Sheet 1). Vegetation types found
in the data set were those previously described in Martinelli
et al. (2020) for Amazon, Atlantic Forest, and Cerrado, namely,
Dense Ombrophilous Forest (DOF), Open Ombrophilous Forest
(OOF), Mixed Ombrophilous Forest (MOF), Campinarana
Forest (CAM), Restinga Forest (MV), and Savanna (SAV).
DOF had sampling sites located in the Amazon as well as in
the Atlantic biome.

Variance Partitioning of Foliar Properties
Into Taxonomy and Site
To partition the variance between taxonomy and site according
to each foliar property, we used a similar statistical procedure
employed by Fyllas et al. (2009) and Asner and Martin (2016),
among others. A multilevel generalized linear mixed model
(GLMM) was used, and model parameters were estimated by
a residual maximum likelihood method (REML). To perform
this analysis, we first checked normality of residuals using the
R package “fitdistrplus” (Delignette-Muller and Dutang, 2015).
Only foliar N concentration was log-transformed to ensure
normality. The “lmerTest” R package was used to run the GLMM
(Kuznetsova et al., 2017). To estimate the pseudo-R2 for GLMM
(R2

GLMM), the R package “MuMIn” was used (Bartón, 2020).
This package estimated the variance explained by the fixed effect
(marginal R2

GLMM), the variance explained by the whole model,
and the sum of fixed and random variables (conditional R2

GLMM;
Nakagawa et al., 2017).

The response variables (foliar properties) were modeled
assuming the following random variables within the GLMM: (i)
species, nested within genus and family; and (ii) site, to account
for environmental filters. Adopting the same nomenclature as
that found in previous studies (Fyllas et al., 2009; Asner and
Martin, 2016; Oliveras et al., 2020), the total variance of the model
for each response variable was then partitioned as follows:

T = µ + ss + f/g/s + ε(2)

where µ is the overall mean value of each foliar trait (T),
presenting C and N elemental concentration and stable isotopic
ratios; ss is the name of each sampling site; f/g/s represents the
nested taxonomic structure of the data, species (s), nested in a
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FIGURE 1 | Map of Brazil with borders of its six major continental biomes: Amazon, Atlantic Forest, Caatinga, Cerrado, Pampa, and Pantanal. Black circles indicate
sampling plots included in this study.

genus (g) and nested in a family (f ); and ε is the residual term
that includes any variability not captured by the model.

Influence of the Fabaceae Family on
Foliar Properties
To test the differences in foliar properties of species of Fabaceae,
we first compared this family with each of the other families
through multiple box-plots without conducting any statistical test
since the main purpose here was to check, in descending order,
how these traits varied among families. Second, we grouped
Fabaceae according to their capability or not of establishing
associations with N2-fixing bacteria (“fixers” and “non-fixers,”
respectively), following Tedersoo et al. (2018). We compared
these two groups with the third group consisting of species
belonging to other botanical families (“non-Fabaceae”) with
regard to foliar N, C:N, and δ15N. With the exception of foliar
N, which was log-transformed before analysis, all variables were
normally distributed. Then, we developed a GLMM considering
these three groups as fixed effect and sampling site as a random

effect. In case of significance (p ≤ 0.05), means were separated
by Sidak’s post hoc test through the “emmeans” R package (Lenth
et al., 2021). Given the often high foliar N concentration of
legumes, a GLMM was used to assess the variance partitioning
for foliar N of Fabaceae fixers and non-fixers into each sampling
site, taxonomy (species nested in a genus), and residual, based on
the statistical procedure described above (Equation 2).

Influence of Wood Density on Leaf Foliar
Properties
Finally, we tested the effects of wood density on foliar properties
by assigning a wood density (ρ) value to each species found in
the data set published by Chave et al. (2006). Unfortunately,
not all species included in our data set were found in the
database provided by Chave et al. (2006). Accordingly, we ended
up with 262 species belonging to 235 genera with values of
ρ, with ∼35% of the total number of species included in our
data set (Supplementary Data Sheet 2). As Chave et al. (2006)
pointed out, most of the variance of ρ was explained at the
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genus level; accordingly, we grouped plants by their respective
genera. We also grouped ρ in three classes considering the 33rd
and 66th percentiles in the frequency distribution of ρ from
Chave’s data set, as follows: low density (ρ < 0.54 g cm−3);
medium density (0.54 < ρ < 0.71 g cm−3), and high density
(ρ > 0.71 g cm−3). These values are similar to the ones
used for classifying mechanical wood properties. However, we
acknowledge that these classes of wood density were solely based
on the frequency distribution of ρ found in Chave et al. (2006).
We tested the effects of ρ on foliar composition through a
simple linear model using the normal distribution, since residuals
were normally distributed for all variables (foliar C, N, and
C:N ratio). A similar procedure used to assess the influence of
the Fabaceae family in foliar properties compared with other
botanical families was adopted here as related to significances
and post hoc tests. The R code used in this study can be found
in Supplementary Data Sheet 3.

RESULTS

Site had the lowest effect (∼21%) on the variance partitioning
of foliar C, while ∼40% of the variance was explained by the
sum of family, genus, and species, and ∼39% of the variance
was attributed to the residual, not accounted by the above factors
(Figure 2 and Table 1). With regard to foliar N, taxonomy
explained∼44% of the variance, while sampling site and residual
represented 28% each (Figure 2 and Table 1). Approximately
26% of the variance of foliar C:N ratio was explained by site,
but taxonomy still represented ∼44% of the variance, while
the remaining percentage (∼30%) was not explained by the
model (Figure 2 and Table 1). The effect of sampling site was
the highest (∼40%) in explaining the variance of foliar δ13C,
followed by residual (∼35%) and taxonomy (∼25%), with the
lowest importance (Figure 2 and Table 1). Similar to foliar δ13C,
most of the variance of δ15N was explained by site (∼63%),
while taxonomy and residual accounted for ∼16 and ∼22%,
respectively (Figure 2 and Table 1). Overall, the partitioning
of leaf trait variance within the taxonomy levels indicated that
botanical family explained mostly the total variance for C, N,
and C:N ratio (∼23%, on average), while species was the most
important group for δ13C and δ15N (∼13%, on average; Figure 2
and Table 1). The pseudo-R2 for GLMM of foliar properties
ranged from 0.61 to 0.78 (Table 1).

Although Fabaceae ranked among the N-rich families, it
was not the family with the highest foliar N concentration
or even the lowest C:N ratio (Figures 3, 4). However, the
family-median values for Fabaceae were higher and lower than
the overall median for foliar N and C:N ratio, respectively.
Finally, the family-median δ15N of Fabaceae was essentially
similar to the overall median (Figure 5). By grouping Fabaceae
family according to their N-fixing capacity at genera level, a
clearer picture emerges. The foliar N concentration of fixers
was significantly higher than the other two groups (Figure 6
and Supplementary Table 1). The foliar C:N ratio, as expected,
followed an inverse trend, with fixers showing the lowest median
values, followed by non-fixers and non-Fabaceae (Figure 6 and

TABLE 1 | Variance partitioning according to taxonomy (nested design:
family/genus/species), site, and residual for foliar C, N, C:N ratio, δ13C, and δ 15N.

Factor Variance SD

C

Species:(genus:family) 1.7 1.3

Genus:Family 1.7 1.3

Family 2.7 1.7

Site 3.2 1.8

Residual 6.0 2.5

Total variance 15.4

R2
GLMM = 0.61

N

Species:(genus:family) 0.019 0.137

Genus:family 0.009 0.095

Family 0.031 0.175

Site 0.037 0.192

Residual 0.038 0.194

Total variance 0.133

R2
GLMM = 0.72

C:N ratio

Species:(genus:family) 12.9 3.6

Genus:family 4.6 2.1

Family 30.1 5.5

Site 28.3 5.3

Residual 32.5 5.7

Total variance 108.4

R2
GLMM = 0.70

δ 13C

Species:(genus:family) 0.71 0.84

Genus:family 0.22 0.47

Family 0.18 0.42

Site 1.75 1.32

Residual 1.51 1.23

Total variance 4.38

R2
GLMM = 0.65

δ 15N

Species:(genus:family) 0.88 0.94

Genus:family 0.38 0.62

Family 0.10 0.32

Site 5.53 2.35

Residual 1.92 1.39

Total variance 8.83

R2
GLMM = 0.78

SD, standard deviation of the variance; R2
GLMM, conditional coefficient of

determination for the generalized linear mixed model according to Nakagawa et al.
(2017).

Supplementary Table 1). On the other hand, foliar δ15N was
higher for non-fixers compared with non-Fabaceae and fixers
(Figure 6 and Supplementary Table 1). The variance partitioning
across the two groups of Fabaceae indicated that ∼50, ∼14, and
∼36% of the variance of foliar N was explained by taxonomy,
site, and residual, respectively, for fixers, while for non-fixers,
taxonomy and site represented ∼35 and ∼27% of the variance,
respectively, with the remaining percentage (∼38%) attributed
to residual (Figure 7 and Supplementary Table 2). For both
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FIGURE 2 | Partitioning of variance for foliar C and N concentration, C:N ratio, δ13C, δ15N into taxonomy (nested design: family/genus/species), site, and residual.
Foliar properties are sorted from the less to more site constrained.

groups, genus played a major role relative to species across the
taxonomic levels. In addition, foliar composition varied among
different classes of wood density (Figure 8 and Supplementary
Table 3). However, differences were only significant for foliar
C concentration. Thus, C concentration was the highest in
the high-density class, exhibiting the following trend: high
density > medium density ≈ low density (Figure 8 and
Supplementary Table 3).

DISCUSSION

Taxonomy and Site Affecting the Canopy
Chemistry
We observed that foliar δ15N was strongly environmentally
constrained, therefore presenting a high level of plasticity, with
taxonomy playing a minor role in the respective variation
(Figure 2). This finding indicates that local abiotic conditions,
represented here by the site factor within the variance
partitioning model, are tightly associated with δ15N of leaf
trees in comparison with the genetic (i.e., taxonomic levels)
component. Despite being unable to identify the specific abiotic
factors contributing to this strong relationship, soil N availability
at the local scale and precipitation at a larger scale have been
proven to be the key in controlling the δ15N of plants (Craine
et al., 2009, 2015). Many studies postulate that foliar δ15N tends
to be higher in sites where the N availability (i.e., mineral N
forms) is also high (Högberg, 1997; Martinelli et al., 1999; Craine
et al., 2009), in addition to the lower soil available N in wet
than dryer areas (Amundson et al., 2003; Pardo et al., 2006).
Moreover, a recent study developed an isoscape of soil δ15N for

South America, suggesting a high variation of values across the
Brazilian territory (Sena-Souza et al., 2020), which also helps to
explain the dominance of the environmental filter on predicting
foliar δ 15N.

It is important to notice that still ∼16% of the variance of
foliar δ15N was explained by taxonomy (Figure 2). Plant species
can be important in driving N isotopic ratios in several ways
(Högberg, 1997), such as “preferential” uptake of a particular
mineral; atmospheric or organic N form (Chalk and Smith, 2020);
and metabolic-induced changes of N isotopic ratios (Robinson,
2001; Yoneyama et al., 2001). For instance, Roupala montana
(Proteaceae), a common species found in the Cerrado, is more
effective in acquiring NH4

+ related to NO3
−. This species tends

to have higher foliar δ15N than other species of the same biome
(Bustamante et al., 2004), as NH4

+ tends to be more 15N-
enriched than NO3

− (Högberg, 1997; Houlton et al., 2007).
In our data set, there are 44 specimens of R. montana, most
of them from savannas of Central Brazil, and a minor part
from savannas encroached on the Amazon region. The median
δ15N of R. montana was 5.6h (25th percentile = 4.3h; 75th
percentile = 6.5h), while the overall foliar δ15N median of plants
found in savannas was −0.6h (25th percentile = −1.6h; 75th
percentile = 0.6h; Supplementary Data Sheet 1).

Another example of taxonomy influencing foliar δ15N is in
the fixers grouping. Taxonomy determines which species of
Fabaceae family can establish symbiotic relations with bacteria
of the genus Rhizobium, which fix atmospheric N in exchange
for carbohydrates (Sprent, 1995). As the atmospheric N has
a δ15N of 0h, and the fractionation between the Rhizobium
and the plant is almost negligible (Högberg, 1997), species
that rely mainly on BNF potentially have a lower δ15N in
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FIGURE 3 | Box-plots of foliar N concentration of botanical families in decreasing order. The vertical lines inside each box represent the median; the box represents
the first and third quartiles; and the bars represent the interquartile range. The vertical dashed line represents the mean of the entire population. The orange box is
evidencing the Fabaceae family, where a notable part of the species is capable of fixing atmospheric N through symbiotic associations.

comparison with plants relying on the soil as the unique N
source (Virginia and Delwiche, 1982). Although Fabaceae is an
important family in tropical biomes, often specimens do not rely
on BNF as a source of N (Vitousek et al., 2002).

There was a large range of δ15N values in our data set.
However, the median δ15N in sampling sites with DOF (including
forests of the Amazon and Atlantic Forest biome) was equal
to 4.6h (25th percentile = 1.8h; 75th percentile = 7.1h;
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FIGURE 4 | Box-plots of foliar C:N ratio of botanical families in decreasing order. The vertical lines inside each box represent the median; the box represents the first
and third quartiles; and the bars represent the interquartile range. The vertical dashed line represents the mean of the entire population. The orange box is evidencing
the Fabaceae family, where a notable part of the species is capable of fixing atmospheric N through symbiotic associations.

Supplementary Data Sheet 1), which is well above the
overall median for foliar δ15N, supporting the hypothesis of
low and facultative BNF in tropical forests (Hedin et al.,
2009; Barron et al., 2011; Nardoto et al., 2014). Most of

the negative or near-zero δ15N values were observed in the
savanna’s sites, with a median equal to = −0.6h (25th
percentile = −1.2h; 75th percentile = 0.1h; Supplementary
Data Sheet 1). Despite many specimens with negative foliar
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FIGURE 5 | Box-plots of foliar δ15N of botanical families in decreasing order. The vertical lines inside each box represent the median; the box represents the first and
third quartiles; and the bars represent the interquartile range. The vertical dashed line represents the mean of the entire population. The orange box is evidencing the
Fabaceae family, where a notable part of the species is capable of fixing atmospheric N through symbiotic associations.

δ15N in sites with savannas vegetation, it is not possible to
assess the role of BNF since near-zero δ15N values in the
savannas can be derived from BNF as well as the association
of legumes with mycorrhizal fungi in N-limited systems,

where depleted δ15N compounds are delivered to the plant
(Bustamante et al., 2004).

Due to the importance of water availability in driving foliar
δ13C values by the photosynthetic discrimination against 13CO2
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FIGURE 6 | Box-plots of foliar N (A), C:N ratio (B), and δ15N (C) of non-Fabaceae species as well as non-fixer and N2-fixer species of the Fabaceae family. The
horizontal lines inside each box represent the median; the box represents the first and third quartiles; and the bars represent the interquartile range. The horizontal
dashed line represents the mean of the entire population. White circles represent estimate means obtained from the generalized linear mixed model. The summary of
the statistical model can be seen in Supplementary Table 1. Levels followed by a common letter are not different according to the Sidak-test at p ≤ 0.05.

(Lloyd and Farquhar, 1994; Diefendorf et al., 2010; Cornwell
et al., 2018), we hypothesized that climatic and soil conditions
would be more important than taxonomy (Fyllas et al., 2009;

Cornwell et al., 2018). This hypothesis was confirmed since
sampling site explained a major share of the variance, with
taxonomy representing a lower but representative percentage

Frontiers in Forests and Global Change | www.frontiersin.org 10 July 2021 | Volume 4 | Article 662801

https://www.frontiersin.org/journals/forests-and-global-change
https://www.frontiersin.org/
https://www.frontiersin.org/journals/forests-and-global-change#articles


ffgc-04-662801 July 6, 2021 Time: 18:40 # 11

Martinelli et al. Variance Partitioning of Leaf Traits

FIGURE 7 | Partitioning of variance for foliar N concentration of N2-fixing and non-fixing Fabaceae into taxonomy (nested design: genus/species), site, and residual.

(Figure 2). Taxonomy also exerts influence on foliar δ13C
by modulating environmental seasonal changes, such as water
availability, mainly through leaf adjustments like stomatal
conductance and photosynthetic rates (Read and Farquhar, 1991;
Comstock and Ehleringer, 1992). As explained by Cernusak et al.
(2013), water availability seems to be a key control of foliar
δ13C; however, the degree of response to this variable depends on
how each species will counteract the environmental forcing with
leaf adjustments.

Strictly speaking about the taxonomic levels and their role
on functional leaf traits, our study is in line with Fyllas et al.
(2009); Asner and Martin (2016), and Oliveras et al. (2020), who
found a higher proportion of the C and N variance explained
by the botanical family compared with genus and species. For
δ13C, while we observed that species was the more constrained
factor, Fyllas et al. (2009) reported that genus was the dominant
genetic level at a local scale for Amazonian sites. To the best of
our knowledge, this is the first study reporting the partitioning
of variance for foliar δ15N, therefore restricting any comparison
with previously published studies, especially those under similar
geographic conditions to ours.

The Role of Fabaceae in the Nitrogen
Cycle
Taxonomy was the most important factor in explaining foliar
N variance (∼50%) for N2-fixers, while the variance explained
by taxonomy and residual was similar for Fabaceae non-
fixers. This trend is in line with previous studies conducted in
tropical regions (Fyllas et al., 2009; Asner and Martin, 2016).
An iconic example of such control is the higher foliar N
concentration found in the Fabaceae family, especially those able
to establish an association with N-fixing organisms (Figures 3, 6),
a trend already observed by many authors (McKey, 1994;
Vitousek et al., 2002; Townsend et al., 2007; Fyllas et al.,
2009; Nasto et al., 2014; Adams et al., 2016; Taylor and
Ostrowsky, 2019). However, the interpretation of this result
is still unknown.

McKey (1994) proposed that the high foliar N concentration
in Fabaceae evolved before the association with N-fixing
organisms, the so-called “N-demanding lifestyle” of Fabaceae.
In this sense, Wolf et al. (2017) defined the term “hardwired”

(i.e., having an inherent pattern) for this N-rich lifestyle and
found that in fact Fabaceae are not hardwired, but instead,
this family appears to have a high N plasticity, responding
to site N availability and rhizobia colonization. Our results
indeed show a large variability in foliar N concentration of
Fabaceae specimens (Figure 3), suggesting high plasticity, as
proposed by Wolf et al. (2017). The ability of specimens in
this botanical family in assimilating nitrate efficiently via the
nitrate reductase enzyme was also postulated (Smirnoff and
Stewart, 1985). On the other hand, foliar N concentration of non-
fixers was also higher than that of non-Fabaceae, favoring the
hypothesis that the Fabaceae family is indeed hardwired to have
an N-demanding lifestyle.

If a higher N concentration is hardwired in Fabaceae, most
of the variance of foliar N in this family would be explained
by taxonomy. Therefore, the variance partitioning for foliar
N had a comparable weight for taxonomy and site control,
regardless of the Fabaceae group (fixers and non-fixers), with
no dominant contribution from either of these factors on the
variance (Figure 7 and Supplementary Table 2). However, it
seems that site characteristics are driving potential associations
with root symbionts, which likely increase even more the foliar
N contents of fixers in these species (Figure 6). Further research
on this topic is needed to mechanistically partition the effects
of root symbionts.

Another topic less discussed is the fact that the foliar C:N ratio
in fixers was also lower than in non-fixers, which in turn was
lower than in non-Fabaceae (Figure 6). This is an ecologically
key functional trait of Fabaceae in their role to regulate C
accumulation mainly in tropical systems (Davidson et al., 2007;
Siddique et al., 2008; Russell and Raich, 2012; Batterman et al.,
2013), besides the fact that the LES links N and C acquisition
by photosynthesis (Wright et al., 2004). Lower C:N ratios are
also important in accelerating litter decomposition, therefore
enhancing N cycling (Melillo et al., 1982). As expected, foliar
δ15N in fixers was lower than in non-fixers (Figure 6), which
can be attributed to the relatively low isotopic fractionation
of BNF (Högberg, 1997). In addition, a large number of
non-Fabaceae families presented lower values of foliar δ15N
relative to Fabaceae (overall median; Figure 5), which could
explain the similar results between non-Fabaceae and Fabaceae
fixers (Figure 6).

Frontiers in Forests and Global Change | www.frontiersin.org 11 July 2021 | Volume 4 | Article 662801

https://www.frontiersin.org/journals/forests-and-global-change
https://www.frontiersin.org/
https://www.frontiersin.org/journals/forests-and-global-change#articles


ffgc-04-662801 July 6, 2021 Time: 18:40 # 12

Martinelli et al. Variance Partitioning of Leaf Traits

FIGURE 8 | Box-plots of foliar C (A), N (B), and C:N ratio (C) according to wood density groups. Each dot represents the mean of a botanical genus. The horizontal
lines inside each box represent the median; the box represents the first and third quartiles; and the bars represent the interquartile range. The horizontal dashed line
represents the mean of the entire population. White circles represent estimate means obtained from the linear model. The summary of the statistical model can be
seen in Supplementary Table 3. Levels followed by a common letter are not different according to the Sidak-test at p ≤ 0.05.

Could Wood Density Predict Foliar
Properties?
Based on the LES, we expected that trees with low density would
have a higher foliar N content than high-density trees (Wright
et al., 2004; Chave et al., 2009). Therefore, in the successional

continuum of tropical forests, fast-growing, low-density trees
would invest more on nutrients and less on structural C, while
slow-growing, high-density trees would invest less on nutrients
and more on structural C (Poorter et al., 2004; Wright et al.,
2007). However, only foliar C concentration fully followed the
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expected trend, where higher C was found in high-density trees
(Figure 8). The fact that Wright et al. (2007) could not have found
a correlation between wood density and specific leaf area, one of
the pillars of the LES, and neither could we find a correlation
between wood density and foliar N, reinforces the idea that a
convergence between leaf and wood traits, if it exists, is more
complex than we initially thought.

On the other hand, the increase of foliar C with wood density
was expected since wood density is defined as the dry mass of
wood per volume of fresh wood. The wood C concentration in
tropical forests is larger in relation to other elements, but it is
not very variable. For example, Elias and Potvin (2003) found
a wood C variability of 45–50% among 32 species of tropical
trees in Panama. Vieira et al. (2011) found the same range of
variability in the coastal Atlantic Forest in southeast Brazil. As
the variability in wood density is much higher than the wood C
content, high-density trees tend to have higher C concentration
than low-density trees simply because the latter has more mass
packed per unit of volume than the former. This connection
between wood C and density also explains why most of the
variance of foliar C is explained by taxonomy (Figure 2), since
most of the variance of wood density is highly connected with
taxonomy (Chave et al., 2006, 2009).

Finally, we also expected that a correlation between wood
density and foliar δ13C would arise, first because foliar δ13C
is correlated with wood δ13C (Lins et al., 2016), and second
because low-density, light-demanding trees have higher growth
rates compared with high-density trees, shade-tolerant trees
(Chave et al., 2009; Wright et al., 2010). Therefore, it is fair to
suppose that shade-tolerant trees have lower water limitation
related to light-demanding trees, which tend to be taller and more
exposed to the sunlight (Bucci et al., 2004; Wright et al., 2010).
Moreover, lower water limitation leads to more negative foliar
δ13C values (Farquhar and Sharkey, 1982). Such light effect was
clearly shown in a subtropical forest of China (Ehleringer et al.,
1986) and forests along an Andes-to-Amazon elevation gradient
(Martin et al., 2020). Although differences were not statistically
significant, we observed an opposite trend, with foliar δ13C values
of high-density trees, on average, less negative than low-density
trees (data not shown). Therefore, our initial hypothesis was
rejected. Perhaps because as concluded by Wright et al. (2003),
there are few species at both ends of the light-demanding/shade-
tolerant spectrum, but instead, most of the trees in a tropical
forest stand have intermediate light requirements.

CONCLUSION

In this paper, we tested how taxonomy and local effects modulate
the variance of canopy foliar traits, including the two rainforests

(Amazon and Atlantic) and the most iconic savanna of Brazil
(Cerrado). Therefore, we extended variance partitioning of
canopy foliar traits beyond the wet vegetation types of the tropics
included across our sampling sites. Overall, we found that the
variance of δ13C and δ15N was explained by different proportions
of random variables rather than the elemental composition of C
and N. The weight of sampling site in explaining the variance of
C and N stable isotopes was more accentuated compared with
the elemental composition. On the other hand, taxonomy seems
to be more important for foliar C, N, and C:N ratio. This is
especially true for the Fabaceae family, which independently of
fixing N2 or not had higher N foliar concentration in comparison
with other families. Even among Fabaceae, those genera capable
of establishing symbiotic associations with fixing bacteria had
higher N foliar concentration than non-fixing genera. However,
there are still several open questions. For instance, there were a
dozen families that had higher N foliar concentrations compared
with Fabaceae. Is there also a type of taxonomic control in
these families? The answer to this type of question would be
important to simulate how families with low trait plasticity
would respond to increases in temperature and changes in
precipitation patterns in comparison with families with high
trait plasticity. These findings would contribute to model future
tropical vegetation and its biodiversity under a scenario of global
changes, and the feedbacks of those changes on the climate and
nutrient cycling.
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