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A B S T R A C T   

Eta Regional Model of CPTEC-INPE is used to obtain intraseasonal (30-day) 8-member ensemble forecasts over 
the Madeira River basin for the period 2002–2012. The initial and boundary conditions are taken from Atmo-
spheric General Circulation Global Model in six members and from Global Coupled Ocean-Atmosphere Model in 
two members. The intraseasonal forecasts produced by dynamic downscaling with Eta Regional model ensemble 
have satisfactory skill. The skill of the ensemble mean is better than the individual members up to 15-days lead 
time forecasts. The ensemble mean reproduces the seasonal cycle and spatial distribution of the hydrological 
variables. Members with the relaxation technique of Betts-Miller-Janjic produced better results. The forecasts by 
the members that used Kain-Fritsch scheme presented larger deviations from observations. Substantial im-
provements in skill are obtained through bias correction. This is the first work to attempt dynamic downscaling 
over the Madeira Basin in the intraseasonal time scale for a period of 10 years. The ensemble downscaled 
products have potential to be fed into surface hydrological models for forecasting droughts and floods and related 
hydrological variables over the basin.   

1. Introduction 

The Amazon hydrological basin with an area of nearly seven million 
km2 has the most diverse hydrological and ecological regions on the 
planet. The Amazon tropical forest occupies 5.3 million km2, which 
corresponds to 40% of the total tropical forest area of the globe, and is 
home for 10–15% of the biodiversity of the Earth. The basin stores 150 
to 200 billion tons of carbon, thereby it plays a fundamental role in the 
equilibrium of global climate (Fan and Miguez-Macho, 2010; Aragao 
et al., 2014; Latrubesse et al., 2017; Weng et al., 2018; Moran-Zuloaga 

et al., 2018). Due to intense evapotranspiration in the region (3–4 mm 
day− 1) the basin presents high rates of precipitation recycling of 
25–50% which means a significant portion of the precipitation over the 
region is from local and regional cascade recycling (Zemp et al., 2017; 
Zanin and Satyamurty, 2021). 

Condensation and rain formation occur in the middle troposphere 
while evaporation occurs at the surface. That is, solar radiation is used 
for evapotranspiration at the surface and latent energy is released in the 
middle levels. The convective activity transports energy upward in the 
form of latent heat. High rates of precipitation recycling means large 
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fluxes of latent heat. The energy cycle over the whole Amazon tropical 
forest controls the regional circulation and affects global general cir-
culation, and therefore regional and global climates. If the evaporation 
and the transport of latent energy are altered, changes in the regional 
and global climates are expected (Marengo et al., 2009; Nobre et al., 
2009; Zemp et al., 2017). 

In the northern portion of the Amazon basin the recycling efficiency 
of continental evaporation is higher than in the southern portion (Van 
der Ent et al., 2010). The Amazon basin is a composite of several smaller 
basins, of which the Negro River and Madeira River basins, in that order, 
are more important. These two sub-basins contribute to more than 1/3 
of the total runoff of the Amazon Basin into the Atlantic Ocean (Barthem 
et al., 2004). 

Many studies show that the dry season (wet season) in the south-
western portion of the Amazon Basin is becoming longer (shorter) since 
the 1980s (Marengo et al., 2011; Gloor et al., 2013; Arias et al., 2015). In 
addition, the results obtained by Guimberteau et al. (2013) using the 
land surface model ORCHIDEE under the B1, A1B and A2 emission 
scenarios to provide flow projections in the main sub-basins of the 
Amazon River suggest that the Madeira River basin may experience 
climate extremes, i.e., extreme drought events may intensify towards the 
end of the 21st century. In the Madeira and in the southwestern portion 
of the Amazon basin widespread flooding occurred in 1992, 1993, 1997, 
2007, 2008 and recently there were high precipitation and runoff in the 
austral summer of 2014 (Espinoza et al., 2014; Ovando et al., 2016) and 
in 2021. 

Due to the consequences of the extreme events caused by climatic 
variability in the Amazon Basin, forecasting of meteorological events in 
the intra-seasonal time scale becomes important (Silva et al., 2006; Silva 
et al., 2007). Such forecasts are expected to provide valuable informa-
tion for planning strategies and prevention and mitigation of disasters 
related to droughts and floods that may affect the environment and the 
economy of the region. The intra-seasonal hydroclimatic forecasts are 
also utilized for water management, energy generation, navigation, 
agriculture and cattle breeding activities (Tucci et al., 2003; Collischonn 
et al., 2005; Collischonn et al., 2007; Meller, 2012). 

Deterministic forecasts do not inform margins of possible errors. 
Moreover, large variability of the hydroclimatic conditions and their 
uncertainties in the region require the use of ensemble prediction 
technique, widely used in the climate and weather prediction centers 
(Fan et al., 2014; Meller et al., 2014). This technique provides an in-
terval of possible evolution of future weather conditions, thus adding to 
the forecasts its uncertainty and reliability metrics. This technique has 
become the preferred paradigm because it demonstrates improvements 
over the deterministic prediction with any single numerical integration 
(Fan et al., 2014; Schwanenberg et al., 2015; Siddique and Mejia, 2017). 

In Brazil the Center for Weather and Climate Prediction (CPTEC) of 
the National Institute for Space Research (INPE) has been utilizing Eta 
Regional Climate Model (RCM-Eta for brevity) operationally for intra- 
seasonal numerical forecasts (Chou et al., 2005, 2012; Bustamante 
et al., 2006, 2012). Although the usefulness of the intra-seasonal 
ensemble forecasts is appreciated, an evaluation of systematic errors 
in the forecasts inherent to the model is an important activity in order to 
attribute a degree of confidence in climatic simulations (Cloke and 
Pappenberger, 2009; White et al., 2017). Also, it is important to find the 
biases in the forecasts, and to make corrections before presenting the 
forecasts and their uncertainties to the decision makers (Boucher et al., 
2012). There are several techniques for removing or reducing this type 
of errors in the literature. In the intra-seasonal scale forecasts, methods 
employing Linear Scaling and Quantile-quantile Mapping (QM) tech-
niques are more common for the hydrometeorological variables (Piani 
et al., 2010; Themeßl et al., 2012; Yuan et al., 2015; Crochemore et al., 
2016). 

Past studies suggest that the ability of prediction strongly depends on 
the region and season of interest (Liu et al., 2017; Tian et al., 2017). As 
such, the evaluation of the performance of intra-seasonal forecasts of 

precipitation and evapotranspiration for the Madeira River basin, uti-
lizing an ensemble of forecasts with different physical parameterizations 
in the RCM-Eta, is considered to contribute for the understanding of the 
physical and hydrological processes that govern the climate and its 
variability. This understanding is needed for the improvement of pre-
dictive capacity of hydrometeorological variables in the Madeira River 
basin. In this context, the objective of the present study is to evaluate the 
performance and the uncertainties in the meteorological forecasts for 
the Madeira Basin, especially in the reproduction of extreme hydro-
climatic events using different parameterization schemes. The degrees of 
uncertainties in the intra-seasonal forecasts produced by the atmo-
spheric model are estimated which will help to verify improvements in 
the skill of the model. 

2. Methodology 

The principal characteristics of the area of interest, the Madeira 
Basin (Fig. 1), the model characteristics, the numerical experimental 
strategy adapted in this study, and the statistical techniques of evalua-
tion of the intra-seasonal scale forecasts are presented here. The pro-
posed ensemble prediction system is composed of (i) prediction of 
meteorological variables by ensemble forecasts with RCM-Eta obtained 
by dynamic downscaling of Global Climate Model (GCM) outputs, (ii) 
three methods of bias correction, and (iii) statistical verification of skill 
for precipitation and evapotranspiration (hereafter designated ET) 
forecasts. 

Fig. 1. Location and topography of the Madeira River basin. Principal rivers 
and tributaries are shown in blue. Hydrographic stations are marked (black 
triangles). [Agencia Nacional das Aguas (ANA)]. (For interpretation of the 
references to colour in this figure legend, the reader is referred to the web 
version of this article.) 
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2.1. Characteristics of Madeira River basin 

The Madeira River, situated in the southwestern portion of the 
Amazon Basin, starts in the Andes and flows northeastward to join the 
Amazon River. Its basin has diverse geography, vegetation and climate. 
A major part, 51%, of this basin is in Bolivia, 42% in Brazil and 7% in 
Peru with a total area of more than 1.32 × 106 km2 (Molina-Carpio et al., 
2017). Its mean annual rainfall is 1940 mm and its discharge is 31,200 
m3 s− 1 (Molinier et al., 1995). It is composed of three climatic regions 
according to Koppen-Geiger classification, Af (tropical humid), Am 
(tropical rainy with monsoon) and Aw (warm tropical with dry season) 
(Beck et al., 2018). The rainfall regimes of these regions are determined 
by a combination of local-scale and large-scale physiographical and at-
mospheric circulation characteristics. It has a rainy season in austral 
summer (DJFM) related to the South American Monsoon System (SAMS) 
composed of South Atlantic Convergence Zone (SACZ), South America 
Low-level Jet (SALLJ) east of the Andes, Chaco Low and the Bolivian 
High (BH) (Marengo et al., 2004; Wanzeler da Costa and Satyamurty, 
2016). The SACZ and the LLJ determine the transport of moisture from 
southern Amazon region to the southeastern and southern regions of 
Brazil. In the mean, an estimated 50% of the annual precipitation in the 
basin occurs in the 4-month season DJFM, January being the rainiest 
month (Navarro and Maldonado, 2002). The precipitation in the dry 
season (JJAS) is caused by cold frontal incursions from the south 
(Navarro and Maldonado, 2002; Amorim Neto et al., 2015). In austral 
summer, intense convective activity over the southwestern Amazon and 
the high Bolivian plateau cause the anticyclonic circulation in the upper 
troposphere known as Bolivian High (BH). During austral winter the 
Intertropical Convergence Zone (ITCZ) migrates northward, the BH 
disappears and the precipitation is low. 

According to Molina-Carpio et al. (2017), the Madeira basin has 
topographical heterogeneities, ranging from 6400 m asl in its south-
western portion to 50 m asl in the eastern portion. A low lying plain area 
of 150 thousand km2 between the tributaries Beni, Mamore and Gua-
pore, in the upper Madeira basin, known as Llanos de Mojos, with an 
inclination of as little as 10 cm in one km, is inundated most of the year 
and is one of the largest floodplain (Guyot et al., 1996; Hamilton et al., 
2002; Ovando et al., 2016; Parrens et al., 2019). 

2.2. Eta regional climate model 

The RCM-Eta developed at the Center for Weather and Climate 
Studies (CPTEC) of the National Institute for Space Research (INPE) 
(Chou et al., 2005, 2012, 2020) is utilized for obtaining the intra- 
seasonal predictions of atmospheric variables. This model is consid-
ered adequate for limited area forecasts and satisfactorily represents 
mesoscale phenomena. In regions where the topography is steep this 
model (Mesinger, 1984) with its vertical coordinate η in stepwise for-
mation is appropriate (Mesinger et al., 2012). 

The integration scheme in the model is split-explicit. Gravity wave 
adjustment is made through modified forward-backward scheme by 
Janjic (1979) and advection term is treated by Euler-backward scheme. 
Spatial differentiation is treated as proposed by Janjić (1984) which 
controls the false flow of energy to shortwaves. The model has a complex 
representation of physical processes through parameterization schemes. 
The turbulent exchanges in the vertical are solved by Mellor and 
Yamada (1982) scheme with a 2.5 closure, where the turbulent kinetic 
energy is a predicted variable. The energy exchanges at the surface are 
based on the similarity of Monin and Obukhov (1954) and utilizes the 
Paulson (1970) stability function. 

The RCM-Eta contains a set of parametrizations of different subgrid 
scale physical processes. The treatment of radiative fluxes in the atmo-
sphere was developed by Geophysical Fluid Dynamics Laboratory 
(GFDL) in which the shortwave radiation scheme is by Lacis and Hansen 
(1974) and the longwave radiation scheme is based on Fels and 
Schwarzkopf (1975). The initial distributions of Ozone, Carbon dioxide 

and albedo are obtained from climatology. The surface hydrology is 
treated by NOAH scheme (Chen et al., 1997). 

The model has four soil layers, 7 types of soil and 12 types of vege-
tation. The vegetation map of the model includes changes due to 
accelerated human activity observed in the Amazonian biome in the late 
20th century (Sestini et al., 2002). 

2.3. Ensemble intraseasonal forecast strategy 

The ensemble forecast scheme used here considers variations in the 
forecasts due to the uncertainties in the initial conditions and also in the 
physical process parameterizations. The use of ensemble forecasts pro-
vides an interval of the possible evolution of atmospheric states forecast 
by the model, adding information about its reliability. The RCM-Eta 
version seasonal utilizes the convective parameterization scheme of 
Betts-Miller-Janjic (Janjić, 1994) – BMJ, and Kain-Fritsh (Kain, 2004) – 
KF, and cloud microphysics parameterization of Zhao et al. (1997) – 
ZHAO and Ferrier et al. (2002) – FERR. The initial and boundary con-
ditions are provided by the Atmospheric General Circulation Model 
(AGCM - Cavalcanti et al., 2002) and by Global Coupled Ocean- 
Atmosphere Model (GCOAM - Pilotto et al., 2012), both of CPTEC- 
INPE (see Table 1). The resolution of the global models is T062L28, 
corresponding to 200 km horizontal spacing and 28 atmospheric levels 
in the vertical. Each integration is performed for 30 days and the 
anomaly of sea surface temperature persists throughout the integration, 
except when the GCOAM is used for the boundary conditions. In this 
case, the forecast SSTs are used. 

For the present study, the RCM-Eta is configured with a horizontal 
resolution of 40 km and with 38 levels in the vertical. Its horizontal 
domain is limited to 15◦N-50◦S and 25◦W-90◦W and the time step used 
in the integrations is 90 s. The scheme of obtaining higher resolution 
forecasts by integrating a limited area model with the initial and 
boundary conditions given by a GCM is dynamic downscaling. Each 
numerical integration proceeds for 30 days starting from 12 UTC of the 
designated day of every month in the period of 10 years from 2002 to 
2012. Eight numerical integrations, each with a different set of initial 
conditions or precipitation physics or microphysics and/or SST speci-
fied, form an ensemble as shown in Table 1. Six member integrations are 
run with initial and boundary conditions from AGCM. The other two 
members are run with conditions given by GCOAM. The first seven ex-
periments utilize BMJ convection scheme. The eighth member utilizes 
KF scheme. All but the first and the last members use Zhao microphysics 
and the other two use Ferrier parameterization. The starting dates of 
integration of the members vary from 13th to 17th of the month. Un-
certainty in initial conditions is related to errors in observations and 
deficiency in data assimilation methods. Although the errors may be 
small, they can lead to large errors in weather and climate forecasts due 
to the chaotic nature of the atmosphere. Making several forecasts with 
slightly different initial values provides a sense of how different the 
forecast may be if the initial condition exhibits an error (Lorenz, 1963). 

To evaluate the representation of the RCM-Eta in terms of precipi-
tation and evapotranspiration in the Madeira Basin the MERGE data 
(Rozante et al., 2010) and the Global Land Evaporation Amsterdam 
Model - GLEAM data (Miralles et al., 2011; Martens et al., 2017) are 
used. 

The MERGE consists of the interpolation of observed precipitation 
data from approximately 4000 rain gauges spatially distributed over 
South America along with satellite precipitation estimates. The tech-
nique has as its main objective reduction of uncertainty and bias in 
precipitation data, especially for regions with a low density of observed 
data, such as the Amazon basin (Rozante et al., 2020). Daily precipita-
tion data (accumulated over 24 h) with a spatial resolution of 20 km are 
used for this study (available at: http://ftp.cptec.inpe.br/modelos/tem 
po/MERGE/GPM/DAILY/). 

GLEAM (www.gleam.eu) consists of a set of algorithms that uses land 
cover and other satellite measurements to estimate the different 
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components of evapotranspiration (Miralles et al., 2011; Martens et al., 
2017). Here we use GLEAM version v3.5a, which covers the period from 
1980 to 2020 at a spatial resolution of 0.25◦ × 0.25◦ and daily temporal. 
For the analysis, we use actual evapotranspiration (ET, mm day− 1), 
which is defined as the sum of transpiration, bare soil evaporation, open 
water evaporation, interception loss, and snow sublimation. 

2.4. Bias correction 

In order to eliminate or decrease substantially systematic biases from 
raw RCM-Eta outputs and produce useful information for hydrometeo-
rological variables (precipitation and evapotranspiration) in the 
Madeira Basin, three different methods of Bias Correction (BC), namely, 
Linear Scaling (LS) by Lenderink et al. (2007), Empirical Quantile 
Mapping (EQM) by Themeßl et al. (2012), and Gamma Quantile Map-
ping - Parametric (PQM) by Piani et al. (2010), are used to correct the 
biases of RCMs on a daily timescale. For the sake of better comparability 
among methods, all of them were calibrated on daily basis using a 
moving 30 day window centered on each day, producing a transference 
function for each day of the year. For instance, a window of 30 days 
results in 300 values for a 10-year period of calibration. The observed 
precipitation threshold for the determination of a wet day was 
≥1mmday− 1. These methods are briefly described below. The skill 
assessment and bias adjustment of model data were performed using the 
open-source R package climate4R (Iturbide et al., 2019, see also www. 
meteo.unican.es/climate4R), a R-based framework for postprocessing 
(which includes the package downscaleR for statistical downscaling; 
Bedia et al., 2020). 

2.4.1. Empirical quantile mapping (EQM) 
The ‘quantile mapping’ tries to adjust the distribution of the data 

simulated by the RCM-Eta in such a way that those data have the same 
quantile distribution as the observational data. To achieve this, a 
transference function (TF) is applied, which maps the simulated data to 
have the same statistical moments as the respective observed cumulative 
distribution. 

PBC
prev(t) = CDF− 1

obs,d

(
CDFprev,d

(
Pprev(t)

) )
(1)  

where Pprev
BC(t) and Pprev(t) are bias corrected data and simulated data 

from the RCM-Eta during the reference period (also known as the cali-
bration period), and CDFprev, d and CDFobs, d

− 1 are predicted and 
observed cumulative distribution functions for each day d, respectively. 

EQM makes non-linear corrections of the mean, variance, quantiles 
and frequencies, preserving the intensities of the extremes in such a way 
that the adjusted data has the same pattern as the climatological data. A 
limit on daily precipitation can be imposed to avoid distortions in the 
frequency distribution due to trace precipitation such as drizzle. For the 
case of precipitation, the minimum observed precipitation amount for a 
day to be considered wet was 1.0 mm day− 1. The EQM is based on the 
supposition that the observed datasets and the model simulated datasets 
follow the same kind of distribution which may possibly introduce new 
biases. If non-parametric empirical CDFs are introduced without any 

other supposition about the precipitation distribution, the method is 
known as Empirical Quantile Mapping (EQM). 

2.4.2. Gamma quantile mapping - parametric (PQM) 
The quantile mapping can also be used to adjust the RCM-Eta 

ensemble predictions substituting the empirical CDFs by a parametric 
distribution. Similar to EQM, we can assume that both the RCM-Eta 
simulated precipitation data and the observed precipitation data 
follow a specific distribution, a commonly used distribution for precip-
itation is Gamma which is a function of two parameters: α and β, which 
define the form and scale of the distribution, respectively, as shown in 
Eq. (2). 

f γ(x|α, β) = xα− 1⋅
1

βα⋅Γ(α)⋅e
− x
β ; x ≥ 0; α, β ≻ 0 (2)  

where Γ(α) is the Gamma function and α controls the distribution profile 
and β determines the dispersion of the Gamma distribution and x rep-
resents RCM-Eta values of daily precipitation. 

2.4.3. Linear scaling (LS) 
The linear scaling method is based on the calculation of a multipli-

cation correction factor between the climatological normals obtained 
from observational datasets and the simulated normals for the period of 
study. The simulated data is modified by imposing the mean monthly 
values to match perfectly the long term observed means. The precipi-
tation data is generally adjusted through a multiplication factor, keeping 
the same mean as the observational data. The linear scaling operates 
monthly correction values based on the differences between the 
observed control data and the unadjusted data: 

Pcor,d = Pprev,d ×
μ
(
Pobs,d

)

μ
(
Pprev,d

) (3)  

where Pcor,d and Pprev,d are corrected and uncorrected precipitation data, 
respectively, and μ represents Mean (parameter of Gaussian distribu-
tion) of the expected value for the moving interval of 30 days around the 
day ‘d’. 

Although several studies (Shrestha et al., 2015; Teng et al., 2015; 
Shrestha et al., 2017) utilized the linear scaling technique, it tends to 
overvalue the extreme events in the same way as does with more com-
mon events, because the whole series is multiplied by the same factor, 
the monthly correction coefficient, which may affect statistical charac-
teristics of the adjusted data. 

2.5. Evaluation metrics of ensemble predictions 

For this study, we selected deterministic and probabilistic verifica-
tion metrics in order to facilitate the verification of the ensemble fore-
casts. Deterministic verification metrics evaluate the ensemble mean 
forecast, while probabilistic metrics help to evaluate the forecast prob-
abilities, including the ensemble spread (Brown et al., 2010). Intra-
seasonal Forecast quality is assessed using a wide range of attributes, 
including bias, Error and accuracy (Mean Absolute Error – MAE; Root 

Table 1 
Characteristics of members in the ensemble with different physics parameterizations, global model and initial conditions.  

Member Convection scheme Microphysics parameterization Designation of member experiment Inicial/boundary conditions Date 
CI 

Member1 Betts-Miller-Janjic Ferrier BMJFA15 AGCM 15 
Member2 Betts-Miller-Janjic Zhao BMJZA13 AGCM 13 
Member3 Betts-Miller-Janjic Zhao BMJZA14 AGCM 14 
Member4 Betts-Miller-Janjic Zhao BMJZA15 AGCM 15 
Member5 Betts-Miller-Janjic Zhao BMJZA16 AGCM 16 
Member6 Betts-Miller-Janjic Zhao BMJZA17 AGCM 17 
Member7 Betts-Miller-Janjic Zhao BMJZO15 GCOAM 15 
Member8 Kain-Fritsch Ferrier KFFO15 GCOAM 15  
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Mean Square Error - RMSE), spatial correlation (Pearson Correlation 
Coefficient - r), Skill (Brier Skill Score – BSS; Equitable Threat Score – 
ETS; Heidke Skill Score - HSS), discrimination (Relative Operating 
Characteristic Diagram - ROC), according to Brown et al. (2010), 
Demargne et al. (2010) and Wilks (2011). Details of both deterministic 
and probabilistic skill scores are given in Appendix A. 

3. Results and discussion 

3.1. Ensemble precipitation forecast verification 

For the evaluation of the precipitation forecasts over the Madeira 
River basin, the statistical metrics are calculated for each individual 
member prediction as well as for the ensemble mean. The observational 
data means are obtained from MERGE. The mean values of the statistics 
are obtained for the spatial average of the basin and for the whole period 
of study and the results are shown in Fig. 2. 

The bias, MAE and RMSE of member KFFO15 and for the first few 
days of forecast member BMJZO15 (see Table 1) are very high compared 
to members BMJZA13–17, BMJFA15 and the ensemble average. The 
members with the BMJ parameterization and the Zhao cloud micro-
physics produced less bias, MAE and RMSE compared to the rest of the 
members. 

The KFF015 overestimated the quantity of precipitation by about 
36% in relation to the observed values, being the only scheme producing 
more rainfall than the value observed in the area of the present study 
(Fig. 2a). The other members produced about 15% less rainfall. Fig. 2b 
shows that the correlation diminishes with the range of forecast. Fig. 2b 
shows that smaller correlation also could be associated with higher 
values of RMSE. 

In general, the ensemble average performs better, except for the 
BMJZA members with initial conditions of day 15, 16 and 17 which 
perform better for the first 10 days of forecasts as seen in the metrics, 
relative to the performance of the other individual members (Fig. 2c). 
The simulations with BMJ relaxation method present more realistic 
values of precipitation as seen in smaller values of bias than those pro-
duced by KF. 

For the evaluation of the ability of the prediction scheme to 
discriminate the rain and no-rain events for individual member 

integrations (i.e., deterministic forecasts), the set of hits is plotted 
against the set of false alarms for producing ROC (Fig. 3). For a system of 
efficient forecasts, in which the number of hits are far greater than false 
alarms, the curve inclines towards the upper left corner. If the curve is 
near the diagonal, the system does not produce useful information. And, 
if the curve is below the diagonal, the system is useless. 

For determining the capacity of intraseasonal forecasts to discrimi-
nate events of low (> 1,0 mm day− 1), moderate (> 5.0 mm day− 1), high 
(> 10.0 mm day− 1) and intense precipitation (> 15 mm day− 1), Fig. 3 
presents ROCs for the individual members and for the ensemble mean. 

For the low and moderate categories of precipitation the discrimi-
nation is better than in the cases of high and intense precipitations. (By 
discrimination we mean the model’s ability of recognizing the categories 
of rain events). RCM-Eta presents difficulties in forecasting extreme 
precipitation events as also found in Tanessong et al. (2012). However, 
the ensemble mean and the members with BMJ and ZHAO and AGCM 
could discriminate better than those members with GCOAM at all ranges 
of forecast. 

The ETS and HSS metrics for precipitation forecasts up to 30 days for 
thresholds ranging in 1.0 mm from 1.0 to 20 mm are shown in Fig. 4a 
and b, respectively. These metrics represent the skill of the model to 
predict precipitation at different lead times. The longer the lead time the 
lower the skill expected. Except for members using Ferrier scheme and 
those with conditions given by GCOAM, all others scored ETS ≥ 0.2 and 
HSS ≥ 0.25 up to 9 days lead time. The scores, in general, fall from the 
highest values for one-day lead up to 12-days lead time. That is, the 
ability of the model to predict the rainfall intensity decreases after 12- 
days lead time. However, there are upward jumps around 18-days 
lead and after 27-days lead. The scores of the ensemble mean increase 
from lead times of one day to four days and fall thereafter, and there is 
no jump after 27 days lead. 

The scores for different ranges of precipitation threshold values from 
1 to 20 mm day-1 for all forecasts (lead time of 30 days) issued are 
shown in Fig. 4c, d. The scores decrease rapidly for thresholds of pre-
cipitation greater than 6 mm day− 1. That is, there is good agreement 
between the forecasts and the MERGE data for days with rainfall not 
greater than 6 mm day− 1. The ensemble mean has the best scores in the 
interval 2 mm day− 1 to 7 mm day− 1. As is already known the scores 
decrease for more high precipitations (Walker et al., 2019; Chou et al., 

Fig. 2. Bias (a), Correlation Coefficient (b), MAE (c), and RMSE (d) for the 9 members and for the ensemble mean produced by RCM-Eta without bias correction. 
Lead time refers to the range of forecast. 
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2020) and for longer lead times in all numerical model outputs. How-
ever, for higher thresholds of precipitation the members with BMJ 
parameterization have better scores. The ensemble mean has inferior 
scores for higher thresholds. That is, for high rainfall events (P ≥ 10 mm 
day− 1) ensemble mean is not the best choice. 

The basin-mean annual cycles of rainfall for the eight members and 
for the ensemble mean without and with bias correction are shown in 
Fig. 5. For calculating the monthly means over the Madeira Basin, the 
whole period of 10 years of the present study, 2002–2012, is used. Fig. 5 
(a) shows that the member with GCOAM using Kain-Frisch parameter-
ization scheme overestimated the precipitation with respect to MERGE 
data in almost all months. Nevertheless, the ensemble mean is close to 
the climatological mean. All the members represented the annual cycle 
fairly well. Fig. 5(b), (c) and (d) show the cycle after bias corrections. 

The agreement with the MERGE data seasonal cycle has improved 
considerably. The improvement in the case of the bias correction using 
linear scaling is better. 

The benefits of considering the ensemble mean forecasts are 
apparent because the mean error of the ensemble is less than the indi-
vidual deterministic member forecasts. With the technique of correcting 
the bias the estimates of a few members simulating excessively wet 
conditions are improved and are adjusted close to the observed monthly 
means. In general, all the three techniques of bias correction improved 
the forecasts. However, although simple in its concept, the linear scaling 
worked better than the other two, because we are making corrections to 
the mean values. 

The Taylor diagrams of the RCM-Eta forecasts which summarize the 
model performance, separately for the wet (DJF) and dry (JJA) periods, 

Fig. 3. Relative Operational Characteristics (ROC) curves for forecasts in different thresholds of precipitation. Colors indicate different members. Curve for the 
ensemble mean is also presented. 

Fig. 4. ETS (a and c) and HSS (b and d) for the RCM-Eta downscaled forecasts without bias correction. Top row: for lead times. Bottom row: for precipita-
tion thresholds. 
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are given in Fig. 6. The figure shows that in the large majority of fore-
casts the bias corrections improved considerably the performance of the 
model in both wet and dry seasons, in terms of the correlation coefficient 
and standard deviation. The standard deviations after the corrections 
are closer to the observed standard deviations. All the three methods of 

bias correction show the same improvements. However, the LS correc-
tion performs better. 

Fig. 7 shows the spatial distributions of precipitation obtained from 
MERGE and the biases of the ensemble forecasts without applying the 
systematic error correction, ENSEMBLE_ETA_RAW, and after applying 

Fig. 5. Seasonal cycles of 10-year mean precipitation obtained from MERGE, the ensemble mean and the individual members: (a) before bias correction, (b) after 
EQM, (c) after PQM, (d) after LS. The blue shading represents the standard deviation. (For interpretation of the references to colour in this figure legend, the reader is 
referred to the web version of this article.) 

Fig. 6. Taylor Diagram representing spatial correlation and standard deviation for wet, DJF (left) and dry, JJA (right) periods, for individual members and for the 
ensemble mean with and without bias corrections. 
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the corrections, ENSEMBLE_ETA_EQM, ENSEMBLE_ETA_PQM, and 
ENSEMBLE_ETA_LS, for the dry and wet seasons. The RCM-Eta repre-
sented the spatial variation of precipitation over the Madeira Basin in 
both the seasons. Over the Madeira Basin higher precipitations occur in 
DJF due to the southerly position of the ITCZ and the formation of SACZ. 
The forecasts by RCM-Eta without bias correction underestimated pre-
cipitation compared to observations over most of the basin, except in the 
central and southern portions of the basin where the forecasts over-
estimated (Fig. 7b). In the dry season (JJA) higher precipitation values 
occur in the central and southern portions of the basin. In contrast to the 
wet season predictions, the model underestimated precipitation over 
nearly the entire basin and overestimated it in a narrow area of the 
Andean slope (Fig. 7g). 

Higher positive biases are seen over the upper portions of the basin 
over the Andes Mountains in both the seasons, showing that the RCM- 
Eta presents difficulty in representing precipitation in steep slope 
areas. The observational datasets are considered reliable and are 
consistent with the topography of the region. However, there are fewer 
observational data points in the high mountains. The figure shows 
implicitly that there is a relation between the topography and the model 
bias. 

All the three techniques of bias correction effectively improve the 
forecasts obtained by the RCM-Eta. However, there are differences in the 
three techniques in terms of reduction of bias. The spatial distribution of 
biases found after the corrections by EQM and PQM are similar, agreeing 
with Li et al. (2010). The performance of the LS method for bias 
correction on a monthly or seasonal scale rather than daily, although 
simple in its concept, is as good as or better than the techniques that use 
quantile adjustments. However, it is important to remember that the 
quantile mapping adjusts the mean, the variance, the intensity and wet 
and dry day frequencies of the forecasts in addition to the mean. 

Another important improvement by the bias correction methods is 
the adjustments of the topography-dependent biases in the RCM-Eta 
forecasts. Here, we note that the topography related biases are almost 
removed, as was observed by Piani et al. (2010). At great altitudes 
(upper portion of the basin) the forecasts without correction show large 
overestimations of precipitation. On the other hand, in the low lying flat 
areas (Llanos de Mojos), the forecasts of the model are characterized by 
underestimations of mean precipitation in both wet and dry seasons. 
These are perhaps due to systematic errors in the convection parame-
terization scheme to represent small scale effects and clouds at higher 
elevations in the model as was observed by Chou et al. (2005). Such 
underestimations and overestimations are effectively corrected by bias 

correction techniques used here (Fig. 7). 
Fig. 8 shows the mean errors and pattern correlation of the ensemble 

mean precipitation forecast by the RCM-Eta in the Madeira Basin, as 
functions of the lead time, without bias correction and after bias 
correction using the three methods described in the Methodology sec-
tion. The Mean Absolute Error and the spatial correlation as well as 

Fig. 7. Spatial distribution of mean precipitation (mm day− 1) (2002− 2012) for the wet (a) and dry (f) seasons obtained from MERGE. Bias (%) in the ensemble mean 
obtained by RCM-Eta, without correction (raw) for wet (b) and dry (g) seasons. Bias after correction: (c) wet and (h) dry for EQM; (d) wet and (i) dry for PQM; (e) wet 
and (j) dry for LS. 

Fig. 8. MAE (mm day− 1) (a), RMSE (mm day− 1) (b) and Correlation Coefficient 
(c), of the ensemble mean forecast of RCM-Eta, without bias correction, and 
after bias correction by the three techniques, EQM, PQM and LS. 
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RMSE of the predicted precipitation reflects the quality of the forecast 
due to the increase of systematic error with lead time. The forecasts after 
bias correction using LS present the best result, with the mean correla-
tion coefficient of 0.69, better than PQM and EQM. Zhao et al. (2017) 
mentioned that imposing the correlation coefficient to remain unaltered 
is the weakest point in EQM technique of bias correction. A comparison 
of the statistical metrics before and after the bias correction shown in 
Fig. 8, indicate that the bias corrections performed well to increase the 
correlation between the predicted and observed data. Also, the MAE and 
RMSE are reduced, although some errors remain. 

In order to examine the capacity of the forecast system and dis-
cernibility between the intense rain, rain and no-rain events, ROC dia-
grams are presented for distinct intervals of precipitation in Fig. 9. The 
ROC curves for the three bias-corrected forecasts are all close to each 
other. The ROC curve for the forecasts in the precipitation interval 0 to 
1.0 mm day− 1 without bias correction (Fig. 9a) is also close to the rest of 
the curves. But, the curves for forecasts without correction at higher 
precipitation rates move towards the diagonal. That shows that bias 
correction is necessary for improving the forecasts of moderate and high 
precipitations. There is higher reliability for less high rainfall events 
even without bias correction. 

The Taylor diagrams and error shown in Fig. 10 present the quality of 
the forecasts in terms of Centered Root Mean Square Error (CRMSE), 
bias, correlation coefficient and standard deviation, all in one place. Bias 
and CRMSE arise from decomposition of RMSE, where the systematic 
and the unsystematic part of the RMSE are shown. In Fig. 10b, the dis-
tance of a point on the curve from the origin is equal to RMSE, all bias 
correction methods reduce the unsystematic error in the predictions. LS 
and PQM seem to reduce the precipitation systematic error closer to zero 
than EQM. All the three methods of bias correction improve the quality 
of forecasts considerably as can be seen from the reduction of mean 
errors and from the standard deviation (SD) of the forecasts approaching 
the climatological observed SD and the increase in the spatial correla-
tions between the forecasts and the observations. The magnitude of 
improvements in the three methods of correction are comparable. 

In order to establish the ability of the intra-seasonal forecast system, 
the BSS for different lead times of prediction and for different intervals 
of precipitation rates are calculated. The scores are presented in Fig. 11 
and, in general, they decrease with lead time up to day 10 and stabilize 

with small ups and downs up to day 17 (Fig. 11a, c, e). The scores attain 
minimum values at lead time of 22 days. Later, the scores increase up to 
30-days lead time. Why the scores increase rapidly at lead times longer 
than 22 days needs investigation. Another important aspect is that the 
scores are highest for events of precipitation of 3 mm day− 1 and for 
higher rates of precipitation the ability decreases sharply reaching very 
low scores for high and intense rains events. The HSS is higher than 0.3 
for moderate and light precipitation events of less than 8 mm day− 1 

(Fig. 11f). In all the panels the curves in yellow in comparison with other 
curves show that the scores (representing the ability of the forecast 
system) after bias correction of the forecast data using the LS method 
obtains higher values. The average-based bias correction method (LS) 
does not specifically consider daily extremes (thresholds above 15 mm 
day− 1) of precipitation. Intense precipitation is adjusted using the same 
multiplicative correction factor as light precipitation. Therefore, HSS 
and ETS for intense precipitation corrected by LS is lower compared to 
the PQM method (Fig. 11d, f). These results are in agreement with 
Verkade et al. (2013) who have analyzed the effect of bias corrections by 
different methods on the ECMWF forecast system. Also, Kolachian and 
Saghafian (2019) evaluated the precipitation forecasts given in S2S of 
ECMWF after postprocessing using the quantile mapping method. They 
concluded that the bias corrected forecasts show good ability of pre-
dicting monthly precipitations over most areas of Iran. 

3.2. Ensemble evapotranspiration forecast verification 

The 10-year mean spatial distribution of evapotranspiration over the 
Madeira Basin for the wet (DJF) and dry (JJA) seasons forecast by the 
RCM-Eta ensemble along with the corresponding percentage bias in 
relation to the GLEAM data is presented in Fig. 12. The figure also 
presents the percentage bias without applying the systematic error 
correction and after applying the corrections. In general, the RCM-Eta 
ensemble is able to represent the spatial distribution of ET. The fore-
cast magnitudes vary from 3 to 5 mm day− 1. The mean of the ensemble 
overestimated ET over most parts of the basin in both the seasons by 
about 30 to 40%. As is observed in the GLEAM data, higher seasonal 
variation of evapotranspiration is forecast over the southern portion of 
the basin, influenced by the availability of solar energy. 

Larger biases are seen over the slopes of the Andes and near the 

Fig. 9. Relative Operational Characteristics curves (ROC) for the ensemble mean forecast from RCM-Eta without bias correction and after bias correction by the three 
methods, EQM, PQM and LS. 
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confluence of Madeira River with the main stream of the Amazon River. 
The bias correction, however, reduced the biases by less than 5% in the 
wet season and around 10% in the dry season over the Madeira Basin. 
The dry-season percentage biases are larger because the evapotranspi-
ration is smaller. It is noteworthy to observe that the large biases 
observed in the slopes of the Andes in the southwestern portion have 
reduced substantially after the correction, in both the seasons. 

The 10-year mean annual cycle of the individual member in-
tegrations and the ensemble mean forecasts of ET, before and after bias 
correction, along with the corresponding GLEAM observation values are 

shown in Fig. 13. All the individual members and the ensemble mean 
overestimated evapotranspiration in all the months of the year in rela-
tion to the GLEAM datasets (Fig. 13a). The dispersion between the 
members, except one member with KFF-GCOAM, is small. After the bias 
correction the ensemble mean as well as the individual members rep-
resented the seasonal cycle very satisfactorily. 

For the evaluation of evapotranspiration forecasts over the Madeira 
River basin, statistical metrics are calculated for each individual mem-
ber forecast as well as for the ensemble average. The observational data 
means are obtained from GLEAM. The mean values of the statistics are 

Fig. 10. Taylor diagram (a) Represents the spatial correlation as the azimuthal angle (dashed lines), lines of CRMSE are given in grey and forecast standard deviation 
by the standard deviation of the observations on the x-axis (orange circle is observed) and (b) Error diagram with contributions from systematic and unsystematic 
errors to the RMSE of the ensemble mean of the RCM-Eta, without and with bias corrections by EQM, PQM and LS. 

Fig. 11. BSS, ETS and HSS for the ensemble mean precipitation forecast by the RCM-Eta, without and with bias correction by EQM, PQM and LS. Left column: scores 
as functions of forecast lead time (ranging in 1.0 mm from 1.0 to 20 mm). Right column: scores as functions of rainfall for all forecasts (lead time of 30 days). 
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obtained for the spatial average of the basin and for the entire study 
period and the results are shown in Fig. 14. 

The bias, MAE and RMSE of the member KFFO15 and for the initial 

days of member BMJZO15 are very high compared to members 
BMJZA13–17, BMJFA15 and the ensemble average. The members with 
the BMJ parameterization and the Zhao cloud microphysics produced 

Fig. 12. Spatial distribution of mean evapotranspiration (mm day− 1) for 2002–2012 for (a) wet and (f) dry seasons obtained from GLEAM datasets. Bias (%) of the 
ensemble mean obtained by RCM-Eta without bias correction (raw), (b) wet and (g) dry seasons. Bias of the ensemble mean after correction: by Linear Scaling: for (c) 
wet and (h) dry for EQM; (d) wet and (i) dry for PQM; (e) wet and (j) dry for LS. 

Fig. 13. Seasonal cycle of mean Evapotranspiration in the period 2002–2012, obtained from GLEAM datasets, the ensemble mean and the individual member in-
tegrations obtained by the RCM-Eta. (a) without bias correction, and after bias correction by (b) after EQM, (c) after PQM, (d) after LS. The blue shading represents 
the standard deviation. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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less bias, MAE and RMSE compared to the rest of the members. 
KFF015 overestimated the amount of evapotranspiration by about 

1.0 mm day− 1 relative to the observed values, being the only scheme 
that produced more precipitation and consequently a higher availability 
of soil humidity which altered the partitioning of energy at the surface, 
and produced less heat for heating the air (sensible heat) than for plant 
transpiration and evaporation of water at the surface (latent heat) 
(Fig. 14a). The other members overestimated evapotranspiration by 
about 0.6 mm day− 1. Fig. 14b shows that the correlation decreases with 
the prediction interval. However, for the average of the members the 
spatial correlation increases starting on forecast day 21. Member 
BMJF15 has the lowest spatial correlation with the observed field. 

In general, the ensemble average performs better, except for the 
BMJZA members with initial conditions of day 14 perform better be-
tween forecast days 11 and 19, as shown in the metrics relative to the 
performance of the other individual members. Relative to the different 
parameterizations, KF shows higher evapotranspiration values in the 
intra-seasonal forecasts (Fig. 14c). Simulations with the BMJ relaxation 
method show more realistic precipitation values, as seen in smaller bias 
values than those produced by KF. 

Fig. 15 shows the MAEs, RMSE and spatial pattern correlation of the 
ensemble mean evapotranspiration predicted by RCM-Eta in the 
Madeira Basin as functions of lead time, without bias correction and 
after bias correction using the three methods described in the Method-
ology section. The predictions after bias correction using LS show the 
best result, with the average correlation coefficient of 0.85, better than 
PQM and EQM. A comparison of the statistical metrics before and after 
bias correction presented in Fig. 15, indicates that the bias corrections 
performed well to increase the correlation between the predicted and 
observed data. In addition, the MAE and RMSE are reduced, although 
some errors remain with respect to the observed GLEAM data. 

4. Summary and conclusions 

Madeira River basin is an important contributor to the total drainage 
of the Amazon Basin. Extreme flood and drought events in the basin 
affect the hydrological cycle of adjoining regions as well as the local 
population. High resolution precipitation and evapotranspiration fore-
casts on the intra-seasonal time scales are necessary for feeding the 

surface and atmospheric hydrological models for forecasting the river 
level, drainage and the area of inundation. The RCM-Eta in ensemble 
mode with eight members is used to downscaling the forecasts of at-
mospheric variables over the Madeira Basin up to 30 days, during the 
10-year period 2002–2012. The initial and boundary conditions are 
provided by two different global models. The members of the ensemble 
are distinguished by the global model, the parameterization schemes for 
microphysics and convection and the starting date and time (see Table 1 
for details). The mean performance characteristics of the precipitation 
and evapotranspiration forecasts over the basin obtained by the indi-
vidual members as well as by the ensemble mean are thoroughly 
analyzed using the statistical metrics widely used in global centers of 
meteorological and climatological forecasts and studies. 

One of the conclusions is that the intraseasonal forecasts produced by 
dynamic downscaling with RCM-Eta ensemble have satisfactory skill. 
The skill of the ensemble mean is better than the individual members up 
to 15-days lead time forecasts. The member which used the global 
ocean-atmosphere coupled model GCOAM showed less skill. With 
respect to different parameterizations, members with the relaxation 
technique of Betts-Miller-Janjic produced better results. The forecasts by 
the members that used Kain-Fritsch scheme presented larger deviations 
from observations. It is important to note that the Kain-Fritsch scheme 
was used in only one boundary condition and with one microphysics 
scheme. 

Another important conclusion is that bias correction is necessary for 
improving the skill scores substantially and reducing the Mean Absolute 
Error (MAE) and Root Mean Square Error (RMSE) in the precipitation 
and evapotranspiration forecasts. The Relative Operational Character-
istics (ROC) have shown improvement after bias correction. All the three 
techniques used in this study to reduce model bias improved the forecast 
skills and other performance metrics. The linear scaling (LS) technique 
for bias correction, although simple in its concept, is as good as or better 
than the techniques that use quantile adjustments. 

The anomaly correlations between the forecasts and the corre-
sponding MERGE observational precipitation data remained above 0.6 
up to 9 days. The correlation after 18 days of forecasts showed an 
increasing trend and reasons are to be investigated. In general, the 
downscaling with regional model along with bias correction brought 
improvements in the forecasts of spatial distribution which shows that 

Fig. 14. Bias (a), Correlation Coefficient (b), MAE (c), and RMSE (d) from evapotranspiration for the 9 members and for the ensemble mean produced by RCM-Eta 
without bias correction. Lead time refers to the range of forecast. 
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the local orographic and surface characteristics influence the 

precipitation and evaporation. However, over steep slopes of the Andes 
some significant biases persisted even after corrections. 

The present study is the first to attempt dynamic downscaling over 
the Madeira Basin in the intraseasonal time scale for a period of 10 years. 
The ensemble downscaled products have potential to be fed into surface 
hydrological models for forecasting droughts and floods and related 
hydrological variables over the basin. 
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Appendix A. Verification metrics 

A.1. Mean absolute error 

This index gives the mean accuracy of the prediction system, given by 

MAE =
1
N
∑N

t=1

⃒
⃒Pprev(t) − Pobs(t)

⃒
⃒ (A.1)  

where N is the number of observations, Pobs(t) is observed precipitation at the instant t and Pprev(t) is the precipitation given by the member at the same 
instant of time. This metric is used to measure the mean error between the deterministic prediction or ensemble prediction and the observed data. 

A.2. Root mean square error 

The RMSE is used to evaluate the magnitude of the error of a deterministic forecast and is given by 

RMSE =

[
1
N
∑N

t=1

(
Pprev(t) − Pobs(t)

)
2

]1 /

2

(A.2) 

It has the advantage of retaining the units of the variable predicted and includes the effects of the model bias and the estimated variance. It 

Fig. 15. MAE (mm day− 1) (a), RMSE (mm day− 1) (b) and Correlation Coeffi-
cient (c) from evapotranspiration, of the ensemble mean forecast of RCM-Eta, 
without bias correction, and after bias correction by the three techniques, 
EQM, PQM and LS. 
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represents the magnitude of mean difference between the forecast and the observation. RMSE near zero means the forecast is perfect. 
A.3. Correlation coefficient (r) 

The Pearson correlation coefficient measures the strength of linear association between two variables. Here, we consider the relation between n 
pairs of predicted and the corresponding observed data and is given by 

r =

∑N
t=1

(
Pprev(t) − Pprev(t)

)(
Pobs(t) − Pobs(t)

)

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅∑N
t=1

(
Pprev(t) − Pprev(t)

)
2

√

.

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅∑N
t=1

(
Pobs(t) − Pobs(t)

)
2

√ (A.3)  

where N is the number of pairs of data and the overbar means the sample mean. The correlation theoretically varies from − 1 to +1. r = +1 means the 
two variables are perfectly and positively related. Positive relation means, if one variable increases the other also increases. A negative relation is the 
opposite. r = − 1 means that the relation is perfect except that they are negatively related. r = 0 means that the two variables are unrelated. 

A.4. Brier skill score (BSS) 

The Brier score index measures the mean quadratic error of probability for the occurrence of a discrete event, and is given a reference interval. This 
index is analogous to the RMSE of a deterministic forecast except it considers the probabilities. It is given by 

BS(L) =
1
n

∑n

t=1
(pprevt − pobst)2 (A.4)  

where L is a reference interval analyzed, pprevt is the probability predicted at the instant t. In this case, the probability pprevt is equal to the fraction of 
the members that exceed the value of precipitation L at the given instant, pobst is the observed probability at instant t (pobs = 1 if the event occurs, pobs 
= 0 if the event does not occur). The total number of forecast/event pairs n is simply the sum of these counts. BS assumes values 1 or 0, 1 for the case 
when the event (exceeding the value L) occurred, and 0 for the case the event did not occur. BS tells us if the predicted value agrees with the 
observation in exceeding a certain value of precipitation at a given instant (or on a given day). 

A forecast which has excellent relation with the observations in terms of exceeding or not a given or prescribed value of precipitation, the BS equals 
0. However, rare events which exceed the prescribed values may give a false impression of agreement with observations. For this reason, a modified 
score called Brier Skill Score (BSS) as given by 

BSS = 1 −
BSprev

BSref
(A.5)  

is preferred instead. This provides a measure of skill of the forecast system in comparison with a reference forecast which is usually the climatology. 

A.5. Relative operating characteristics (ROC) diagram 

The ROC measures the capacity of the ensemble forecast system to discriminate the happening or not of events of precipitation within prescribed 
limits. For this purpose, a 2 × 2 contingency table is constructed for describing the distribution of simultaneous occurrences of predictions and ob-
servations (Table A.1).  

Table A.1 
Contingency table used for defining relative operating characteristics diagram (ROC) and Heidke Skill Score (HSS).   

Observed 

Forecast 
Precipitation No Precipitation Marginal of Fcst 
a (hits) b (false alarms) a + b (yes fcsts) 
c (misses) d (correct rejects) c + d (no fcsts) 

Marginal of Obs a + c (yes obs) b + d (no obs) n = a + b + c + d 

a is the number of hits of precipitation events, d is the number of hits of no precipitation events, b is false alarm and c 
miss. 

Based on the table, two indices called probability of detection (POD) and probability of false detection (POFD) are calculated: 

POD =
a

a + c
, ( = 1, perfect)

POFD =
b

b + d
, ( = 0, perfect) (A.6) 

The POD indicates the frequency of correct forecasts (i.e., occurrence is predicted) and POFD the frequency of false forecasts (i.e., the event 
predicted did not occur). In the ROC diagram pairs of POD and POFD are plotted for each interval of the variable. The diagonal line on the graph is the 
limit for the prediction system skill. That is if there are more correct forecasts than false forecasts, the system is considered having some skill. 

A.6. Equitable threat score (ETS) 

The ETS measures the fraction of events correctly predicted (hits) after discounting the random hits and is given by 

ETS =
H − CH

F + O − H − CH
(A.7) 
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in which CH = F*O
n . 

Here CH is the expected number of hits in a random forecast. F is the number of events of precipitation predicted above a certain threshold, O is the 
number of events of precipitation observed above the threshold, H is the number of hits and n is the total number of events. 

A.7. Heidke skill score (HSS) 

The HSS is a statistic frequently used to provide an idea of the relative quality of the forecast. The reference forecasting system is the proper 
climatology obtained from the historical observational series or a system based on persistence (Doswell III et al., 1990). The index measures the skill of 
the simulation/forecast to foresee correctly the precipitation in relation to the standard utilized, as if the forecast is made randomly. The index 
eliminates the influence of random hits. The index uses the proportion of correct forecasts as metric for calculating the relative quality of the forecast 
system, also obtained after elaborating the contingency table (Table A.1). From this table, the index is defined as 

HSS =
2*(a*d − b*c)

[(a + c)*(c + d) + (a + b)*(b + d) ]
(A.8) 

This index varies between − 1 and 1. HSS = − 1 indicates that the model is incapable and HSS = 1 indicates that the model is perfectly capable. HSS 
= 0 means that the mean historical values are as good as the model predictions. 
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hidroclimática de vazão de curto prazo na bacia do rio São Francisco. Rev. Bras. 
Recur. Hidr. 12, 31–47. https://doi.org/10.21168/rbrh.v12n3.p31-41. 

Tanessong, R.S., Vondou, D.A., Igri, P.M., Kamga, F.M., 2012. Evaluation of Eta weather 
forecast model over Central Africa. Atmosph. Clim. Sci. 2 (4), 532–537. 

Teng, J., Potter, N.J., Chiew, F.H.S., Zhang, L., Wang, B., Vaze, J., Evans, J.P., 2015. How 
does bias correction of regional climate model precipitation affect modelled runoff? 
Hydrol. Earth Syst. Sci. 19, 711–728. https://doi.org/10.5194/hess-19-711-2015. 

Themeßl, M.J., Gobiet, A., Heinrich, G., 2012. Empirical-statistical downscaling and 
error correction of regional climate models and its impact on the climate change 
signal. Clim. Chang. 112 (2), 449–468. https://doi.org/10.1007/s10584-011-0224- 
4. 

Tian, D., Wood, E.F., Yuan, X., 2017. CFSv2-based sub-seasonal precipitation and 
temperature forecast skill over the contiguous United States. Hydrol. Earth Syst. Sci. 
21 (3), 1477–1490. https://doi.org/10.5194/hess-21-1477-2017. 

Tucci, C.E.M., Clarke, R.T., Collischonn, W., da Silva Dias, P.L., de Oliveira, G.S., 2003. 
Long-term flow forecasts based on climate and hydrologic modeling: Uruguay River 
basin. Water Resour. Res. 39 (7) https://doi.org/10.1029/2003WR002074. 

Van der Ent, R.J., Savenije, H.H., Schaefli, B., Steele-Dunne, S.C., 2010. Origin and fate 
of atmospheric moisture over continents. Water Resour. Res. 46 (9) https://doi.org/ 
10.1029/2010WR009127. 

Verkade, J.S., Brown, J.D., Reggiani, P., Weerts, A.H., 2013. Post-processing ECMWF 
precipitation and temperature ensemble reforecasts for operational hydrologic 
forecasting at various spatial scales. J. Hydrol. 501, 73–91. https://doi.org/10.1016/ 
j.jhydrol.2013.07.039. 

Walker, D.P., Birch, C.E., Marsham, J.H., Scaife, A.A., Graham, R.J., Segele, Z.T., 2019. 
Skill of dynamical and GHACOF consensus seasonal forecasts of East African rainfall. 
Clim. Dyn. 53 (7), 4911–4935. https://doi.org/10.1007/s00382-019-04835-9. 

Wanzeler da Costa, C.P., Satyamurty, P., 2016. Inter-hemispheric and inter-zonal 
moisture transports and monsoon regimes. Int. J. Climatol. 36 (15), 4705–4722. 
https://doi.org/10.1002/joc.4662. 

Weng, W., Luedeke, M.K., Zemp, D.C., Lakes, T., 2018. Aerial and surface rivers: 
downwind impacts on water availability from land use changes in Amazonia. 
Hydrol. Earth Syst. Sci. 22, 911–927. https://doi.org/10.5194/hess-22-911-2018. 

White, C.J., Carlsen, H., Robertson, A.W., Klein, R.J., Lazo, J.K., Kumar, A., Zebiak, S.E., 
2017. Potential applications of subseasonal-to-seasonal (S2S) predictions. Meteorol. 
Appl. 24 (3), 315–325. https://doi.org/10.1002/met.1654. 

Wilks, D.S., 2011. Statistical Methods in the Atmospheric Sciences, vol. 100. Academic 
Press. https://doi.org/10.1016/B978-0-12-385022-5.00008-7. 

Yuan, X., Wood, E.F., Ma, Z., 2015. A review on climate-model-based seasonal 
hydrologic forecasting: physical understanding and system development. Wiley 
Interdiscip. Rev. Water 2 (5), 523–536. https://doi.org/10.1002/wat2.1088. 

Zanin, P.R., Satyamurty, P., 2021. Interseasonal and Interbasins Hydrological Coupling 
in South America. J. Hydrometeorol. 22 (6), 1609–1625. https://doi.org/10.1175/ 
JHM-D-20-0080.1. 

Zemp, D.C., Schleussner, C.F., Barbosa, H.M., Hirota, M., Montade, V., Sampaio, G., 
Rammig, A., 2017. Self-amplified Amazon forest loss due to vegetation-atmosphere 
feedbacks. Nat. Commun. 8 (1), 1–10. https://doi.org/10.1038/ncomms14681. 

Zhao, Q., Black, T.L., Baldwin, M.E., 1997. Implementation of the cloud prediction 
scheme in the Eta Model at NCEP. Weather Forecast. 12, 697–712. https://doi.org/ 
10.1175/1520-0434(1997)012<0697:IOTCPS>2.0.CO;2. 

Zhao, T., Bennett, J.C., Wang, Q.J., Schepen, A., Wood, A.W., Robertson, D.E., Ramos, M. 
H., 2017. How suitable is quantile mapping for postprocessing GCM precipitation 
forecasts? J. Clim. 30 (9), 3185–3196. https://doi.org/10.1175/JCLI-D-16-0652.1. 

W.B. Gomes et al.                                                                                                                                                                                                                              

https://doi.org/10.1038/nature22333
https://doi.org/10.5194/hess-11-1145-2007
https://doi.org/10.1029/2009JD012882
https://doi.org/10.1029/2009JD012882
https://doi.org/10.1007/s00382-016-3264-7
https://doi.org/10.1175/1520-0469(1963)020<0130:DNF>2.0.CO;2
https://doi.org/10.1175/1520-0442(2004)017<2261:COTLJE>2.0.CO;2
https://doi.org/10.1175/1520-0442(2004)017<2261:COTLJE>2.0.CO;2
https://doi.org/10.1029/2008GM000744
https://doi.org/10.1029/2008GM000744
https://doi.org/10.1029/2011GL047436
https://doi.org/10.5194/gmd-10-1903-2017
https://doi.org/10.5194/gmd-10-1903-2017
http://hdl.handle.net/10183/70057
https://doi.org/10.1590/2318-0331.011616004
https://doi.org/10.1029/RG020i004p00851
https://doi.org/10.1029/RG020i004p00851
http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=8419610
http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=8419610
https://doi.org/10.1007/s00703-012-0182-z
https://doi.org/10.5194/hess-15-453-2011
https://doi.org/10.5194/hess-15-453-2011
https://doi.org/10.1080/02626667.2016.1267861
https://doi.org/10.1080/02626667.2016.1267861
http://refhub.elsevier.com/S0169-8095(22)00072-2/rf0275
http://refhub.elsevier.com/S0169-8095(22)00072-2/rf0275
http://refhub.elsevier.com/S0169-8095(22)00072-2/rf0280
http://refhub.elsevier.com/S0169-8095(22)00072-2/rf0280
https://doi.org/10.5194/acp-18-10055-2018
http://refhub.elsevier.com/S0169-8095(22)00072-2/rf0290
http://refhub.elsevier.com/S0169-8095(22)00072-2/rf0290
http://refhub.elsevier.com/S0169-8095(22)00072-2/rf0290
http://refhub.elsevier.com/S0169-8095(22)00072-2/rf0295
http://refhub.elsevier.com/S0169-8095(22)00072-2/rf0295
https://doi.org/10.1016/j.ejrh.2015.11.004
https://doi.org/10.1016/j.ejrh.2015.11.004
https://doi.org/10.1016/j.jag.2019.04.011
https://doi.org/10.1175/1520-0450(1970)009<0857:TMROWS>2.0.CO;2
https://doi.org/10.1175/1520-0450(1970)009<0857:TMROWS>2.0.CO;2
https://doi.org/10.1007/s00704-009-0134-9
https://doi.org/10.1007/s00704-012-0633-y
https://doi.org/10.1175/2010WAF2222325.1
https://doi.org/10.1175/2010WAF2222325.1
https://doi.org/10.1080/01431161.2020.1763504
https://doi.org/10.1080/01431161.2020.1763504
https://doi.org/10.1007/s11269-014-0899-1
http://refhub.elsevier.com/S0169-8095(22)00072-2/rf0340
http://refhub.elsevier.com/S0169-8095(22)00072-2/rf0340
http://refhub.elsevier.com/S0169-8095(22)00072-2/rf0340
http://refhub.elsevier.com/S0169-8095(22)00072-2/rf0340
https://doi.org/10.5194/hess-19-4317-2015
https://doi.org/10.1016/j.scitotenv.2017.05.028
https://doi.org/10.1175/JHM-D-16-0243.1
https://doi.org/10.21168/rbrh.v11n3.p15-29
https://doi.org/10.21168/rbrh.v11n3.p15-29
https://doi.org/10.21168/rbrh.v12n3.p31-41
http://refhub.elsevier.com/S0169-8095(22)00072-2/rf0370
http://refhub.elsevier.com/S0169-8095(22)00072-2/rf0370
https://doi.org/10.5194/hess-19-711-2015
https://doi.org/10.1007/s10584-011-0224-4
https://doi.org/10.1007/s10584-011-0224-4
https://doi.org/10.5194/hess-21-1477-2017
https://doi.org/10.1029/2003WR002074
https://doi.org/10.1029/2010WR009127
https://doi.org/10.1029/2010WR009127
https://doi.org/10.1016/j.jhydrol.2013.07.039
https://doi.org/10.1016/j.jhydrol.2013.07.039
https://doi.org/10.1007/s00382-019-04835-9
https://doi.org/10.1002/joc.4662
https://doi.org/10.5194/hess-22-911-2018
https://doi.org/10.1002/met.1654
https://doi.org/10.1016/B978-0-12-385022-5.00008-7
https://doi.org/10.1002/wat2.1088
https://doi.org/10.1175/JHM-D-20-0080.1
https://doi.org/10.1175/JHM-D-20-0080.1
https://doi.org/10.1038/ncomms14681
https://doi.org/10.1175/1520-0434(1997)012<0697:IOTCPS>2.0.CO;2
https://doi.org/10.1175/1520-0434(1997)012<0697:IOTCPS>2.0.CO;2
https://doi.org/10.1175/JCLI-D-16-0652.1

	Intraseasonal scale ensemble forecasts of precipitation and evapotranspiration for the Madeira River basin using different  ...
	1 Introduction
	2 Methodology
	2.1 Characteristics of Madeira River basin
	2.2 Eta regional climate model
	2.3 Ensemble intraseasonal forecast strategy
	2.4 Bias correction
	2.4.1 Empirical quantile mapping (EQM)
	2.4.2 Gamma quantile mapping - parametric (PQM)
	2.4.3 Linear scaling (LS)

	2.5 Evaluation metrics of ensemble predictions

	3 Results and discussion
	3.1 Ensemble precipitation forecast verification
	3.2 Ensemble evapotranspiration forecast verification

	4 Summary and conclusions
	Declaration of Competing Interest
	Acknowledgments
	Appendix A Verification metrics
	A.1 Mean absolute error
	A.2 Root mean square error
	A.3 Correlation coefficient (r)
	A.4 Brier skill score (BSS)
	A.5 Relative operating characteristics (ROC) diagram
	A.6 Equitable threat score (ETS)
	A.7 Heidke skill score (HSS)

	References


