# ESTUDO DO POTENCIAL DO RESÍDUO DO AÇAÍ PARA CELULOSE E PAPEL

Terena do Couto Sampaio VIDAL¹; Marcela Amazonas CAVALCANTI² ¹Bolsista PIBIC/CNPq/INPA; ²Orientador INPA/CPCR

# 1. Introdução

Durante séculos, o homem utilizou materiais de diferentes categorias para se expressar e se comunicar. Mas somente em meados do século XIX a madeira passou a ser a principal matéria-prima para fabricação de papel e só a partir dos anos 60 a espécie eucalipto tornouse amplamente utilizada como a principal fonte de fibra para fabricação do papel (Suzano, 2007).

A cada instante, novos produtos surgem como respostas para redução dos resíduos sem destino correto e para minimização do extrativismo desordenado. O papel é um dos materiais que pode ser confeccionado a partir de inúmeras matérias-primas potenciais.

A produção de papel artesanal alia aspectos como: aproveitamento de resíduos, conferindo valor econômico a esse resíduo, que passa a ser um importante insumo nos processos produtivos; facilidade do processo produtivo; redução do custo de produção com água e energia (em comparação com o processo industrial), assim como, com equipamentos de produção (instrumentos simples e de baixo custo); possibilidade de criação de cooperativas de produtores, proporcionando alternativa de renda à população carente, desempregados e outros segmentos que não tem acesso ao mercado formal de trabalho.

Saturnino (2010) afirma que mesmo sendo um processo recente no país, o uso do papel artesanal apresenta grande potencial de crescimento devido à enorme variedade de fibras e plantas existentes, fato que vem despertando o interesse de empresas que trabalham com papelaria convencional cartões, cadernetas e agendas.

O artesanato do Amazonas fornece inúmeros resíduos, como pelos de açaí, fibras e pó de couro de peixe. Coltou-se os resíduos gerados nas principais concentrações de artesanato e desenvolveu-se um material com potencial tecnológico para atender ao segmento papeleiro e de embalagens.

Assim, a caracterização do potencial tecnológico do açaí para a fabricação de papel artesanal, testando o seu pelo e caroço para a produção do mesmo, efetuando análises físico-mecânicas no papel gerado, constituem as propostas do presente trabalho.

## 2. Materiais e Métodos

A pesquisa foi realizada no Instituto Nacional de Pesquisas da Amazônia (INPA) na Coordenação de Pesquisas em Produtos Florestais (CPPF) no laboratório de Celulose e Papel/Carvão Vegetal. A coordenação desenvolve estudos de caracterização tecnológica, processos e produtos de origem madeireira e não madeireira. Os resíduos estudados são fibra e caroço do açaí, resíduos estes, foram coletados em uma feira no bairro do Zumbi, segundo informações recebidas no local de coleta, o açaí é originado de Codajás, município do Amazonas.

Com a obtenção da matéria-prima, a primeira etapa realizada foi a limpeza da mesma, no caso, os caroços de açaí, separando sua borra. Foram separados também, uma quantidade de cavacos para a realização do primeiro segmento proposto na tabela. Cada material teve seu peso seco determinado conforme Norma IPT (1994);

O processo utilizado para obtenção da polpa foi o termo-químico, sendo usado para tal, o equipamento conhecido por cozinhador. Foi colocado a quantidade relativa de 50% de caroço de açaí e 50% de cavaco.

A deslignificação do material foi conseguida através da ligação do reagente soda (20%) e enxofre(10%). O material conseguido como resultado no cozinhador é colocado então no hidrapulper, equipamento este que serve para desintegrar os pedaços de cavaco. A limpeza ocorre no depurador, onde será excluída a parte não cozinhada.

A pasta adquirida é então colocada na centrífuga para retirada do excesso de água.

A próxima etapa é a fabricação da folha de papel, para posteriores testes físicos. A pasta obtida é colocada em um aparelho chamado desintegrador, juntamente com água, para homogeneização dessa pasta. Em seguida, a pasta é refinada e homogeneizada novamente, sendo colocada no aparelho denominado Shopper Riegler, onde será retirado seu grau de refino. Retira-se 1 litro dessa combinação de água e pasta que será submetida à máquina secadora e formadora de papel. Com essa folha obtida, podemos calcular a quantidade de água e pasta que será utilizada para a produção do papel com a gramatura previamente estipulada.

#### 3. Resultados e discussões

O resultado da pasta obtida através da combinação cavaco/ açaí foi relativamente bom, o pelo do açaí apesar de gerar pouca fibra e de baixa qualidade, se torna um agregador na fabricação de papel artesanal. A quantidade de pasta obtida apenas dos caroços de açaí (100%) foi muito inferior ao seu peso inicial, apresentando pouca quantidade de fibra, não sendo viável apenas o seu uso para produção de papel

Segundo Leão e Cavalcanti (2010), o rendimento do pelo do caroço de açaí foi de 100% para o processo mecânico. Já para o termomecânico e termoquímico não houve formação de polpa celulósica, considerando apenas como matéria-prima o referido pelo.

No decorrer do trabalho realizado no laboratório, foram feitos papéis utilizando somente o cavaco de madeira a nível comparativo nos testes físicos. A idéia inicial foi desenvolver uma tabela comparando os papéis obtidos de pasta 100% açaí, 100% cavaco e 50/50% açaí e cavaco. A seguir, a tabela comparativa entre os papéis gerados e, respectivamente, seus resultados nos teste físicos:

**Tabela 1**: comparação dos testes físicos realizados em folhas feitas somente de cavacos (100%) e folhas introduzindo o açaí na sua formação (50/50%).

|                   |             | PAPEL  |                    |        |
|-------------------|-------------|--------|--------------------|--------|
|                   | 100% CAVACO |        | 50/50% CAVACO+AÇAÍ |        |
|                   | 40'         | 70′    | 40′                | 70′    |
|                   |             |        |                    |        |
| Gramatura (g/m³)  | 41,84       | 73,04  | 41,56              | 71,25  |
| Espessura (mm)    | 0.084       | 0,128  | 0,088              | 0,140  |
| Porosidade (mL/s) | 5,72        | 20,28  | 2,56               | 6,96   |
| Peso da folha (g) | 1,3137      | 2,2936 | 1,3080             | 2,2374 |
| Alongamento (mm)  | 1,18        | 1,52   | 0,88               | 1,30   |
| Tração (Kgf)      | 3,26        | 7,06   | 2,75               | 5,28   |
| Rasgo (mN)        | 3,13        | 4,11   | 2,76               | 3,72   |

#### 4. Conclusão

No período de trabalho realizado em um ano no laboratório de Celulose, Papel e Carvão Vegetal, os objetivos propostos no inicio das atividades foram todos realizados, sendo possível obter resultados significativos. A idéia principal da pesquisa era dar uma finalidade ao pelo e caroço de açaí, gerando um novo produto e agregando a ele um valor econômico. A proposta então foi agregar a fibra do açaí na fabricação de papel artesanal.

A pasta obtida com a combinação cavaco/açaí, obteve bom resultado, gerando uma pasta de boa qualidade para fabricação do papel, mas de pouca quantidade quando comparada à pastas obtidas através de aparas ou até mesmo do próprio cavaco de madeira. Os testes físicos realizados com o papel proveniente dessa combinação mostraram que ele pouco diferencia de um papel feito apenas de cavaco.

O mesmo não aconteceu com a pasta obtida através de 100% açaí, a qual não gerou uma boa polpa, nem uma quantidade limite para a formação de uma folha, os testes físicos não chegaram nem a ser realizados por falta de pasta suficiente.

Com isso conclui-se que o açaí se torna um bom agente agregador na formação de papel artesanal, porém, ele somente não nos fornece material de boa qualidade e quantidade para fabricação a longa escala de papel.

## 5. Referências

INSTITUTO DE PESQUISAS TECNOLÓGICAS DO ESTADO DE SÃO PAULO. **Celulose e Papel: tecnologia de fabricação da pasta celulósica**. 2. ed. V.1. São Paulo: IPT, 1994. 559 p.

LEÃO, M. dos S.; CAVALCANTI, M.A. **Estudo celulósico e papeleiro de resíduos artesanais e capim canarana**. Relatório final de Iniciação Científica – PIBIC/INPA/FAPEAM. 11p. 2010.

SATURNINO, J.;MIRANDA, A. R. **A arte impressa em fibras**. Disponível em: <a href="http://www.eba.org.br">http://www.eba.org.br</a>. Acesso em: 26 de out 2010.

Suzano 2007 - www.suzano.com.br. Acesso: 15 de dezembro de 2010.

# 6. Anexos



Fig.1 folha de papel agregando o açaí na sua fabricação

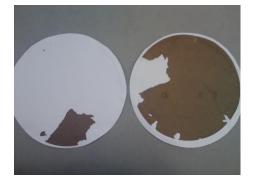



Fig.2 folha de papel formada apenas por 100% açaí