ANÁLISE MORFOMÉTRICA DAS BACIAS HIDROGRÁFICAS DO EDUCANDOS E SÃO RAIMUNDO NA REGIÃO DE MANAUS – AM

Eduardo Bulcão da Silva COSTA¹; Márcio Luiz da SILVA² ¹Bolsista PIBIC/CNPq; ²Orientador INPA

1. Introdução

As diferentes formas de relevo presentes na superfície terrestre são oriundas da interação entre processos tectônicos, pedogênicos e intempéricos, que atuam de forma diversificada nos diferentes materiais rochosos. As bacias hidrográficas, como um sistema individualizado, podem ser consideradas como fontes de dados relevantes para a obtenção de informações sobre a evolução do modelado da superfície da Terra.

Os estudos morfométricos de bacias hidrográficas fornecem informações preciosas acerca dos processos erosivos e de sedimentação que se processam em uma dada região. Particularmente na região de Manaus, as pesquisas têm mostrado que é necessário o entendimento acerca dos processos geológicos e estruturais importantes no controle tectônico dos rios na região.

O presente estudo visa analisar as bacias hidrográficas do Educandos e São Raimundo, na região de Manaus, a partir da quantificação dos parâmetros morfométricos (forma, área, assimetria, limites) e analisar sob a ótica da geomorfologia e da geologia estrutural. Para isso, uma ferramenta importante para o desenvolvimento desse estudo concerne na utilização de dados cartográficos digitais disponíveis, modelos SRTM (Shutter Radar Topographic Mission) da NASA e imagens de satélite. As ferramentas computacionais para Geoprocessamento, chamadas de Sistemas de Informação Geográfica (GIS), permitem realizar análises complexas, ao integrar dados de diversas fontes e ao criar bancos de dados geo-referenciados, tornando ainda possível automatizar a produção de documentos cartográficos (INPE, 2004).

2. Material e Metódos

O município de Manaus situa-se na grande Planície Amazônica (03º 08' 07" S e 60º 01' 34" W), entre as confluências dos rios Negro e Solimões. As áreas de estudo deste trabalho compreendem duas bacias hidrográficas da cidade de Manaus, Amazonas, que são, as bacias de Educandos (LS 3º 04' 16.95" e 3º 08' 83.51" e LW 59º 55' 62.35" e 60º 01' 31.42"), do São Raimundo (LS 3º 01' 48" e 3º 06' 35" e LW 59º 55' 36" e 60º 4' 31").

Segundo Tonello (2005), as características morfométricas podem ser divididas em: características geométricas, características do relevo e características da rede de drenagem. Para fins didáticos o trabalho foi dividido em quatro etapas:

1º Geração da base para estudo

Para a realização da extração das redes de drenagem, necessitou-se da aquisição dos modelos SRTM, de 90 metros, fornecidos pela NASA, a partir do seu banco de dados, através do site ftp://e0srp01u.ecs.nasa.gov e das imagens TOPODATA, com resolução de 30 metros, através do site http://www.dsr.inpe.br/topodata/acesso.php. Com a aquisição das imagens, pode-se dar início a confecção da rede de drenagem tanto com os modelos SRTM, com resolução de 90 metros, quanto com as imagens TOPODATA, com resolução de 30 metros.

2º Análise das características geométricas

- a) Área da bacia (A): é toda área drenada pelo conjunto do sistema fluvial, projetada em plano horizontal.
- b) Perímetro (P): Comprimento da linha imaginária ao longo do divisor de águas (Tonello, 2005).

- c) Fator Forma (Kf): Relaciona a forma da bacia com a de um retângulo, correspondendo a razão entre a largura média e o comprimento axial da bacia, podendo ser descrito pela seguinte equação (VILLELA; MATTOS 1975): $\mathbf{F} = \mathbf{A}/\mathbf{L}^2$ (Sendo: F = fator forma; A = área de drenagem e L = comprimento do eixo da bacia).
- d) Coeficiente de compacidade (Kc): Relaciona a forma da bacia com um círculo. Constitui a relação entre o perímetro da bacia e a circunferência de um círculo de área igual ao da bacia (CARDOSO et al., 2006), podendo ser calculado na seguinte equação (VILLELA; MATTOS 1975): Kc = 0,28 x P/√A (Sendo: Kc = coeficiente de compacidade; A = área de drenagem e P = perímetro).
- e) Índice de circularidade (IC): é a relação existente entre a área da bacia e a área do círculo de mesmo perímetro (MILLER, 1953): **IC = 12,57 x A / P**² (Sendo: *IC* = índice de circularidade; *A* = área de drenagem e *P* = perímetro).
- f) Densidade de drenagem (Dd): correlaciona o comprimento total dos canais de escoamento com a área da bacia hidrográfica: $\mathbf{Dd} = \mathbf{L_t} / \mathbf{A}$ (Sendo: Dd = densidade dos rios; L_t = comprimento dos canais e A = área de drenagem).
- g) Densidade hidrográfica (Dh): relação existente entre o número de rios ou cursos d'água e a área da bacia hidrográfica expressa pela fórmula: **Dh** = **N** / **A** (Sendo: *Dh* = densidade hidrográfica; *A* = área de drenagem e *N* = número de rios ou cursos d'água).

3º Análise das características do relevo

- a) Declividade: A declividade relaciona-se com a velocidade em que se dá o escoamento superficial, afetando, portanto, o tempo que leva água da chuva para concentrar-se nos leitos fluviais que constituem a rede de drenagem das bacias, sendo que os picos de enchente, infiltração e susceptibilidade para erosão dos solos dependem da rapidez com que ocorre o escoamento sobre os terrenos da bacia (VILLELA; MATTOS 1975).
- b) Altitude: A variação de altitude associa-se com a precipitação, evaporação e transpiração, consequentemente sobre o deflúvio médio. Grandes variações de altitude numa bacia acarretam diferenças significativas na temperatura média, a qual, por sua vez, causa variações na evapotranspiração.
- c) Amplitude altimétrica: É a variação entre a altitude máxima e altitude mínima.

4º Análise das características da rede de drenagem

- a) Ordem dos cursos d'água: Consiste no processo de se estabelecer a classificação de determinado curso d'água no conjunto total da bacia hidrográfica na qual se encontra. Para a hierarquização dos canais fluviais adotou-se o sistema proposto por Strahler (1964), que denomina os menores canais, sem tributários como os de primeira ordem, desde a sua nascente até a confluência. Os canais de segunda ordem surgem da confluência de dois canais de primeira ordem, e só recebem afluentes de primeira ordem. Quando há o encontro entre dois canais de segunda ordem, surge um canal de terceira ordem, que pode receber tanto tributários de primeira como de segunda ordem, e assim sucessivamente.
- b) Índice de sinuosidade: É a relação entre o comprimento do canal principal e a distância vetorial entre os extremos do canal (ALVES; CASTRO, 2003), sendo calculada pela fórmula: $\mathbf{Is} = \mathbf{L} / \mathbf{D_v}$ (Sendo: $\mathbf{Is} = \text{Índice}$ de sinuosidade; $\mathbf{L} = \text{comprimento}$ do canal principal e $\mathbf{D} \mathbf{v} = \text{distância}$ vetorial do canal principal).

3. Resultados e discussão

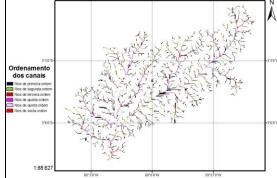
A bacia do Educandos para os modelos SRTM, com resolução de 90 metros, apresenta uma área de 44,578 km² e perímetro de 38,051 km, caracterizando-se como uma bacia de 3ª ordem (Fig. 1). O comprimento do canal principal é de 9,877 km com uma rede de drenagem total de 53,725 km. A densidade de drenagem apresentada é de 1,20 km/km², indicando dessa forma que a bacia apresenta uma baixa capacidade de drenagem. A densidade hidrográfica é de 1,70 canais/km², ou seja, apresenta mais de um canal por km².

O fator forma é de 0,32 e o índice de circularidade de 0,38, o que indica que a bacia apresenta uma forma alongada.

A mesma bacia hidrográfica trabalhada, porém, com as imagens TOPODATAS, com resolução de 30 metros, apresenta área equivalente a 44,563 km² e perímetro de 36,273 km, caracterizando-se como uma bacia de 5ª ordem (Fig. 2). O comprimento do canal principal é 9,472 km com rede de drenagem total

de 170,632 km. A densidade de drenagem apresentada é alta, 3,87 km/ km², ou seja, tratase de uma bacia excepcionalmente bem drenada. A densidade hidrográfica é de 17,25 canais/ km². O fator forma apresentado é de 0,33 e o índice de circularidade de 0,42.

Figura 1 - Hierarquização da Bacia do Educandos, com resolução de 90 metros.


Figura 2 - Hierarquização da Bacia do Educandos, com resolução de 30 metros.

A bacia do São Raimundo para os modelos SRTM, com resolução de 90 metros, apresenta uma área de 117,363 km² e perímetro de 68,331 km, caracterizando-se como uma bacia de 4ª ordem (Fig. 3). O comprimento do canal principal é de 9,417 km com uma rede de drenagem total de 154,389 km. A densidade de drenagem apresentada é de 1,31 km/km², indicando dessa forma que a bacia apresenta uma baixa capacidade de drenagem. A densidade hidrográfica é de 1,94 canais/km², ou seja, apresenta mais de um canal por km².

O fator forma é de 0,35 e o índice de circularidade de 0,31, o que indica que a bacia apresenta uma forma alongada.

A mesma bacia hidrográfica trabalhada, porém, com as imagens TOPODATAS, com resolução de 30 metros, apresenta área equivalente a 116,795 km² e perímetro de 66,633 km, caracterizando-se como uma bacia de 6ª ordem (Fig. 4). O comprimento do canal principal é 2,758 km com rede de drenagem total de 445,948 km. A densidade de drenagem apresentada é alta, 3,81 km/ km², ou seja, trata-se de uma bacia excepcionalmente bem drenada. A densidade hidrográfica é de 17,29 canais/ km². O fator forma apresentado é de 0,33 e o índice de circularidade de 0,34.

Hierarquização da Bacia Hidrográfica

do São Raimundo

Figura 3 - Hierarquização da Bacia do São Raimundo, com resolução de 90 metros.

Figura 4 - Hierarquização da Bacia do São Raimundo, com resolução de 30 metros.

Parâmetros	Valores e Unidades
Årea	44.578 (km²)
Perímetro	38.051 (km)
Comprimento do canal principal	9.877 (km)
Comprimento vetorial do canal	9.087 (km)
principal	
Comprimento total dos canais	53.725 (km)
Coeficiente de compacidade	1,59
Fator forma	0,32
Índice de circularidade	0,38
Ordem do córrego	3a
Densidade de drenagem	1,20 (km/km ²)
Densidade hidrográfica	1,70 (canais/km ²)

Tabela 1 - Parâmetros morfométricos da bacia do Educandos, com resolução de 90 metros.

Parâmetros	Valores e Unidades
Área	44.563 (km²)
Perímetro	36.273 (km)
Comprimento do canal principal	9.472 (km)
Comprimento vetorial do canal principal	9.026(km)
Comprimento total dos canais	170.632 (km)
Coeficiente de compacidade	1,52
Fator forma	0,33
Índice de circularidade	0,42
Ordem do córrego	<u>5</u> a
Densidade de drenagem	3,87 (km/km²)
Densidade hidrográfica	17,25 (canais/km²)

Tabela 3 - Parâmetros morfométricos da bacia do Educandos, com resolução de 30 metros.

Parâmetros	Valores e
	Unidades
Årea	117,363 (km²)
Perímetro	68.331 (km)
Comprimento do canal principal	9.417 (km)
Comprimento vetorial do canal	8.140 (km)
principal	
Comprimento total dos canais	154.389 (km)
Coeficiente de compacidade	1,76
Fator forma	0,35
Índice de circularidade	0,31
Ordem do córrego	4 a
Densidade de drenagem	1,31 (km/km²)
Densidade hidrográfica	1,94 (canais/km ²)

Tabela 2 - Parâmetros morfométricos da bacia do São Raimundo, com resolução de 90 metros.

14

Parâmetros	Valores e
	Unidades
Årea	116.795 (km²)
Perímetro	66.633 (km)
Comprimento do canal principal	2.758 (km)
Comprimento vetorial do canal	2.413 (km)
principal	
Comprimento total dos canais	445.948 (km)
Coeficiente de compacidade	1,72
Fator forma	0,34
Índice de circularidade	0,33
Ordem do córrego	6a
Densidade de drenagem	3,81 (km/km ²)
Densidade hidrográfica	17,29
	(canais/km²)

Tabela 4 - Parâmetros morfométricos da bacia do São Raimundo, com resolução de 30 metros.

4. Conclusão

A bacia do Educandos possui, para os modelos SRTM, com resolução de 90 metros, área de 44,578 km² e perímetro de 38,051 km. Sua rede de drenagem total é de 53,725 km e a densidade de drenagem é de 1,20 km/km². A densidade hidrográfica é de 1,70 canais/km². O fator forma é de 0,32 e o índice de circularidade 0,38. Já a mesma bacia para as imagens TOPODATA, com resolução de 30 metros, apresenta área de 44,563 km² e perímetro de 36,273 km. Sua rede de drenagem total é de 170,632 km e a densidade de drenagem é de 3,87 km/km². A densidade hidrográfica é de 17,25 canais/km². O fator forma é de 0,33 e o índice de circularidade 0,42.

A bacia do São Raimundo possui, para os modelos SRTM, com resolução de 90 metros, área de 117,363 km² e perímetro de 68,331 km. Sua rede de drenagem total é de 154,389 km e a densidade de drenagem é de 1,31 km/km². A densidade hidrográfica é de 1,94 canais/km². O fator forma é de 0,35 e o índice de circularidade 0,31. Já a mesma bacia para as imagens TOPODATA, com resolução de 30 metros, apresenta área de 116,795 km² e perímetro de 66,633 km. Sua rede de drenagem total é de 445,948 km e a densidade de drenagem é de 3,81 km/km². A densidade hidrográfica é de 17,29 canais/km². O fator forma é de 0,34 e o índice de circularidade 0,33.

5. Referências

Alves, J.M.P. e Castro, P.T.A. 2003. Influência de feições geológicas na morfologia da bacia do rio Tanque (MG) baseada no estudo de parâmetros morfométricos e análises de padrões de lineamentos. Ver. Brasileira de Geociências, p. 117 – 1245.

Cardoso, C. A. et. Al. 2006. Caracterização morfométrica da bacia hidrográfica do rio Debossan, Nova Friburgo-RJ. **Árvore**, Viçosa, v.30, n.2: 241 – 248.

INPE. INSTITUTO NACIONAL DE PESQUISAS ESPACIAIS. 2004. Fundamentos de Geoprocessamento: TUTORIAL. São José dos Campos: DPI/INPE. Apostila, 195p.

Miller, V. C. 1953. A quantitative geomorphic study of drainage basins characteristic in the Clinch Mountain área, *Technical Report*, Dept. Geology, Columbia University.

Strahler, A.N. 1964. Quantitative geomorphology of drainage basins and channel networks. In: CHOW, Ven Te (ed.) Handbook of applied Hidrology. New York: McGraw-Hill. p. 4.39-4.76.

Tonello, K. C. 2005. Análise hidroambiental da bacia hidrográfica da cachoeira das Pombas, Ganhães, MG. Tese (Doutorado em Ciências Florestal) – Universidade Federal de Viçosa. 69p.

Villela, S. M. e Mattos, A. 1975. Hidrologia aplicada. São Paulo: McGRAWHill do Brasil. 245p.