ELEMENTOS DE TRANSIÇÃO NAS ÁGUAS DO RIO BRANCO E TRIBUTÁRIO, RR/BR

Jayse Trindade da SILVA¹ Sebastião Átila Fonseca MIRANDA² Maria do Socorro Rocha da Silva³

¹Bolsista IC INPA-PIBIC/CNPq; ²Orientador LQA/INPA; ³Colaborador.

INTRODUÇÃO

O estado de Roraima está situado no extremo Norte do nosso país, fazendo fronteira com a Venezuela e a Guiana, na área delimitada pelas latitudes 05°16′30″N e 01°23′18″S e longitudes 59°18′27″W e 64°45′53″W (Estudos Socioambientais 2010).

O rio Branco é formado pela confluência dos rios Uraricoera e Tacutu (Franco *et al.* 1975), é o principal rio do estado de Roraima, estando em sua margem direita à capital Boa Vista (com 277.684 habitantes), onde vive mais da metade da população do estado, que possui 425.398 habitantes (BRASIL-IBGE, 2010). Os principais afluentes são os rios Catrimani, Mucajaí e Anauá (Santos *et al.* 1985; Ferreira *et al.* 2007).

Nas últimas décadas o rio Branco vem recebendo uma carga poluidora de esgotos domésticos clandestinos bastante elevados, além de diferentes tipos de despejos dos moradores (Gomes 2011).

Em relação à extração mineral, na bacia do rio Branco, encontram-se as atividades de garimpagem e de extração de materiais de construção (areia e seixo). Os garimpos existentes na bacia restringem-se à exploração de ouro e de diamantes (Estudos Socioambientais 2010).

O rio Branco recebe influência de impactos pelo mercúrio agregado os resíduos da mineração, como também naturalmente presente em solos da região, erosão e assoreamento (Ferreira et al. 2007). O nióbio (mineral columbita) é encontrado nos rios Uraricoera e Mucajaí em área indígena, como também ouro e diamante, sendo estes dois últimos comercializados clandestinamente por garimpeiros com muitos resultados negativos de impactos sociais e ambientais dessa atividade (Meirelles-Filho 2006).

O uso da mineração sem monitoramento dos metais que são liberados no processo de extração de ouro pode acarretar grande danos ao meio ambiente e representar perigo para a saúde de sua população, principalmente através do consumo de peixes, o mercúrio liberado para o os rios pode converter para a forma orgânica e concentrar na cadeia alimentar (bioacumulação), o que representa um perigo para a população local (Sing *et al.* 1996).

O estudo tem como objetivo conhecer os metais pesados nas águas do rio Branco e tributários, RR/BR, avaliar sob aspecto químicos e físico-químicos e físicos as águas e tributários e Identificar as possíveis fontes de contaminação desses metais nas águas do rio Branco e tributários e comparar os resultados obtidos com diferentes igarapés naturais na região.

MATERIAL E MÉTODOS

Os estudos foram realizados na bacia do rio Branco e nos rios Tacutu, Amajarí, Uraricoera, Branco (RB1,RB2,RB3,RB4 e RB5), Mucajái, , Jauaperi, Anauá e Alalaú, foram coletado 13 pontos nos meses de out/ 2012 e mar/ 2013 nos locais, figura 1. As amostras foram coletadas com garrafas tipo Van Dorn capacidade de 2L. As determinadas as análises de pH, condutividade elétrica, material em suspensão e as concentrações dos metais Ba, Al, Fe, Mn e Zn nas águas de superfícies no rio Branco e alguns rios da Amazônia.

As análises de pH e condutividade elétrica foram medidos por potenciometria usando um pH-metro digital. Para o oxigênio as amostras foram coletas e fixadas com azida e sulfato manganoso, titulada com tiossulfato segundo método de Winkler (Golterman 1978).

O material em suspensão determinado por gravimetria. As análises de metais as mostras foram fixadas com HNO_3 50% e posteriormente digeridas com peridrol H_2OO_2 a 30% de H_2O_2 por espectrometria de emissão atômica em plasma de argônio indutivamente acoplado (ICP).

As metodologias específicas empregadas neste projeto os procedimentos e critérios de preservação estabelecidos pelo Standard Methods for Examination of Water and Waste Water (APHA 2003).

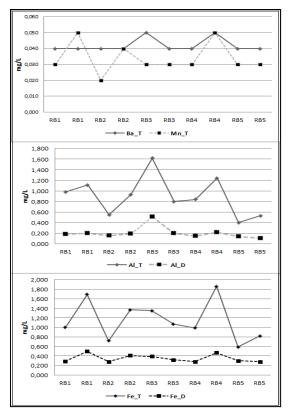
Figura 1. Localização dos locais de coletas.

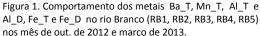
RESULTADOS E DISCUSSÃO

As análises físicas e química das águas do rio Branco, tabela 1.

O pH dos rios das águas do rio Branco variaram de 6,2 a 6,5, enquanto os demais rios da região como por exemplo rio Amajarí valores mínimo encontrado foi de 6,4 e de 6,8 rio Amajari e Mucajaí, sendo rio Mucajaí valor mais próximo a neutralidade.

As condutividade elétricas são de extrema importância na identificação da quantidade de íons dissolvidos. Nas águas do rio Branco foram encontrados valores de 22,4- 27,5 rio Branco 3 e rio Branco 5 e nos demais rios foram de 22,6 – 41,1 rio Alalaú e Tacutu.


Tabela 1. Médias das variáveis obtidas nas análises.


	рН	C.E.µ	OD	Mat.Susp.	Al_T	Al_D	Ba_T	Ba_D	Fe_T	Fe_D	Mn_T
		S/	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L
TAC	6,6	41,1	8,4	10,5	0,630	0,265	0,040	0,080	0,800	0,420	0,045
AMAJ	6,4	31,3	9,0	9,7	0,460	0,250	0,045	0,090	0,540	0,325	0,030
URARI	6,5	29,1	8,2	34,3	0,895	0,275	0,045	0,100	1,075	0,360	0,040
RB1	6,7	26,3	7,7	25,1	1,045	0,190	0,040	0,065	1,345	0,395	0,040
CAU	6,0	14,7	8,1	8,5	0,240	0,140	0,020	0,055	0,555	0,195	0,055
RB2	6,5	29,4	7,7	21,6	0,740	0,175	0,040	0,085	1,045	0,345	0,030
RB3	6,6	22,4	6,7	41,5	1,210	0,355	0,045	0,100	1,210	0,355	0,030
RB4	6,6	26,2	7,2	26,7	1,040	0,185	0,045	0,095	1,425	0,375	0,040
RB5	6,5	27,5	7,7	15,0	0,465	0,120	0,040	0,060	0,705	0,290	0,030
MUC	6,8	38,8	7,2	45,8	1,115	0,265	0,045	0,075	1,690	0,550	0,040
JAUA	6,4	25,4	7,1	20,3	0,705	0,315	0,070	0,105	0,930	0,565	0,030
ANA	6,5	33,8	8,0	33,8	1,205	0,450	0,060	0,090	1,620	0,690	0,065
ALA	5,8	22,6	7,4	4,2	0,500	0,215	0,030	0,090	0,425	0,240	0,020
MÍNIMO	5,8	14,7	6,7	4,2	0,240	0,120	0,020	0,055	0,425	0,195	0,020
MÁXIMO	6,8	41,1	9,0	45,8	1,210	0,450	0,070	0,105	1,690	0,690	0,065

O valores encontrados oxigênio dissolvido foram de 6,7 mínimo no rio Branco 3 e de 9,0 máximo no rio Amajarí, respectivamente.

Os valores de material em suspensão são encontrados no rio Branco foram de 15 – 26,05 e nos demais rios variaram de 4,2- 45,8 rio Alalaú e Mucajaí respectivamente.

Os valores metais encontrados foram de Al_T 0,240–1,210 rio Caumé e rio Branco 3, Ba_T 0,020 - 0,070 rio Cauamé e Jauaperí, Fe_T 0,425–1,690 rio Alalaú e Mucajaí, Mn_T 0,020-0,065 rio Alalaú e Anauá sugeri a formação geológica da região.

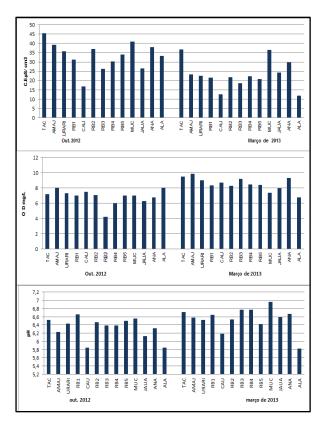


Figura 2. Comportamento dos parâmetros físico - químicas de coletas realizadas em Out/12 e Mar/13.

CONCLUSÃO

As águas do rio da bacia do rio Branco são ligeiramente ácidas e o rio Alalaú obteve resultados mais próximos da acidez. Os parâmetros analisados no presente trabalho mostraram que resultados estão fora dos padrões da Resolução do CONAMA n° 357/2005 como o Al e Fe valores estes encontrados devido atividades que margeiam o rio Branco como as áreas rurais que utilizam a agropecuária ou/e mineração cultivo e plantações e a influencia de esgotos domésticos sem seus devidos tratamentos estão influenciando diretamente na qualidade da água.

REFERÊNCIAS

American Public Health Association – APHA; American Water Work Associatin - AWWA; Water Pollution Control Federation – WPCF. Standard Methods of the Experimination of Water and Wasterwater. 14 ed. New York, 2003. Calrson, C.E.A.; Morrison, G.M. 1992. Franction and Toxicity of Metais in Sewage Slude Technology, 13: 751-769.

IBGE. INSTITUTO BRASILEIRO DE GEOGRAFIA E ESTATÍSTICA. *Atlas nacional do Brasil 2010*. Rio de Janeiro. 2010. ESTUDOS DE INVENTÁRIO HIDRELÉTRICO- BACIA HIDROGRÁFICA DO RIO BRANCO/RR, 2010.

Ferreira, E.; Jansen, Z.; Forsberg, B.; Goulding, M.; Briglia-Ferreira, S.R. 2007. Rio Branco: Peixes, ecologia e conservação de Roraima. Biblos.

Franco, E.M.S.; Del'arco, J. O.; Rivetti, M. Geomorfologia da folha NA.20 Boa Vista. In: BRASIL. Departamento Nacional da Produção Mineral. Projeto Radam. Folha NA-20 Boa Vista e parte folhas NA-21 Tumucumaque, NB-20 Roraima e NB-21: geologia e geomorforlogia, pedologia, vegetação e uso potencial da terra. Rio de Janeiro: DNPM, 1975.

Gomes, NA. 2011. Ausência de Gestão Integrada entre órgãos Governamentais Provocam Desperdício de dinheiro Público e Impede a Revitalização de igarapé Caranã. In XIX Simpósio Brasileiro de Recursos Hídricos. Maceió.

Golterman, H.L.; Clymo, R.S.; E Ohnstad, M.A.M. 1978. *Methods for Physical Andchemical Analysis of Fresh Water*. Blackwell Scientific Publications, 213p.

Meirelles-filho, J.C. 2006. Livro de ouro da Amazônia. 5ª ed., Ediouro, Rio de Janeiro-RJ.

Santos, U.M.; Bringel, S.R.B.; Ribeiro, M.N.G.; Silva, M.N.P. 1985. Rios da Bacia Amazônica. I Afluentes do Rio Branco. *Acta Amazonica*.

Sing, K.A.; Hryhorczuk, D.; Saffirio, G.; Sinks, T.; Paschal, D.C.; Sorensen, J.; Chen, E.H. 1996. Environmental Exposure to Organic Mercury among the Makuxi in the Amazon Basin. *Int J Occup Environ Health*, 2(3).