Use este identificador para citar ou linkar para este item: https://repositorio.inpa.gov.br/handle/1/15219
Registro completo de metadados
Campo DCValorIdioma
dc.contributor.authorTonelli, Fernanda MP-
dc.contributor.authordos Santos NassifLacerda, Samyra Maria-
dc.contributor.authorProcópio, Marcela Santos-
dc.contributor.authorLemos, Breno Luiz Sales-
dc.contributor.authorFrança, Luiz Renato de-
dc.contributor.authorResende, Rodrigo Ribeiro-
dc.date.accessioned2020-05-07T14:14:47Z-
dc.date.available2020-05-07T14:14:47Z-
dc.date.issued2017-
dc.identifier.urihttps://repositorio.inpa.gov.br/handle/1/15219-
dc.description.abstractMicroinjection is commonly performed to achieve fish transgenesis; however, due to difficulties associated with this technique, new strategies are being developed. Here we evaluate the potential of lentiviral particles to genetically modify Nile tilapia cells to achieve transgenesis using three different approaches: spermatogonial stem cell (SSC) genetic modification and transplantation (SC), in vivo transduction of gametes (GT), and fertilised egg transduction (ET). The SC protocol using larvae generates animals with sustained production of modified sperm (80% of animals with 77% maximum sperm fluorescence [MSF]), but is a time-consuming protocol (sexual maturity in Nile tilapia is achieved at 6 months of age). GT is a faster technique, but the modified gamete production is temporary (70% of animals with 52% MSF). ET is an easier way to obtain mosaic transgenic animals compared to microinjection of eggs, but non-site-directed integration in the fish genome can be a problem. In this study, PI3Kc2α gene disruption impaired development during the embryo stage and caused premature death. The manipulator should choose a technique based on the time available for transgenic obtainment and if this generation is required to be continuous or not. © The Author(s) 2017.en
dc.language.isoenpt_BR
dc.relation.ispartofVolume 7pt_BR
dc.rightsAttribution-NonCommercial-NoDerivs 3.0 Brazil*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/br/*
dc.subjectPhosphatidylinositol 3 Kinaseen
dc.subjectAdult Stem Cellen
dc.subjectAngiogenesisen
dc.subjectAnimalsen
dc.subjectCichliden
dc.subjectCytologyen
dc.subjectDeficiencyen
dc.subjectFemaleen
dc.subjectGene Expression Regulationen
dc.subjectTransduction, Geneticen
dc.subjectGeneticsen
dc.subjectGerm Cellen
dc.subjectGrowth, Development And Agingen
dc.subjectLarvaen
dc.subjectMaleen
dc.subjectMetabolismen
dc.subjectMicro-injectionen
dc.subjectMutationen
dc.subjectEmbryo, Nonmammalianen
dc.subjectProceduresen
dc.subjectTransgenic Animalsen
dc.subjectTransplantationen
dc.subjectVascularizationen
dc.subjectZygoteen
dc.subjectAdult Germline Stem Cellsen
dc.subjectAnimalen
dc.subjectAnimal, Genetically Modifieden
dc.subjectCichlidsen
dc.subjectEmbryo, Nonmammalianen
dc.subjectFemaleen
dc.subjectGene Expression Regulation, Developmentalen
dc.subjectGerm Cellsen
dc.subjectLarvaen
dc.subjectMaleen
dc.subjectMicroinjectionsen
dc.subjectMutationen
dc.subjectNeovascularization, Physiologicen
dc.subjectPhosphatidylinositol 3-kinasesen
dc.subjectTransduction, Geneticen
dc.subjectZygoteen
dc.titleGene delivery to Nile tilapia cells for transgenesis and the role of PI3K-c2α in angiogenesisen
dc.typeArtigopt_BR
dc.identifier.doi10.1038/srep44317-
dc.publisher.journalScientific Reportspt_BR
Aparece nas coleções:Artigos

Arquivos associados a este item:
Arquivo Descrição TamanhoFormato 
artigo-inpa.pdf3,6 MBAdobe PDFThumbnail
Visualizar/Abrir


Este item está licenciada sob uma Licença Creative Commons Creative Commons