Use este identificador para citar ou linkar para este item: https://repositorio.inpa.gov.br/handle/1/19965
Registro completo de metadados
Campo DCValorIdioma
dc.contributor.authorPhillips, Oliver L.-
dc.contributor.authorLewis, Simon L.-
dc.contributor.authorBaker, Timothy R.-
dc.contributor.authorChao, Kuo Jung-
dc.contributor.authorHiguchi, Niro-
dc.date.accessioned2020-06-16T15:57:54Z-
dc.date.available2020-06-16T15:57:54Z-
dc.date.issued2008-
dc.identifier.urihttps://repositorio.inpa.gov.br/handle/1/19965-
dc.description.abstractLong-term monitoring of distributed, multiple plots is the key to quantify macroecological patterns and changes. Here we examine the evidence for concerted changes in the structure, dynamics and composition of old-growth Amazonian forests in the late twentieth century. In the 1980s and 1990s, mature forests gained biomass and underwent accelerated growth and dynamics, all consistent with a widespread, long-acting stimulation of growth. Because growth on average exceeded mortality, intact Amazonian forests have been a carbon sink. In the late twentieth century, biomass of trees of more than 10cm diameter increased by 0.62±0.23 t C ha-1yr-1 averaged across the basin. This implies a carbon sink in Neotropical old-growth forest of at least 0.49±0.18 Pg C yr-1. If other biomass and necromass components are also increased proportionally, then the old-growth forest sink here has been 0.79±0.29 Pg C yr-1, even before allowing for any gains in soil carbon stocks. This is approximately equal to the carbon emissions to the atmosphere by Amazon deforestation. There is also evidence for recent changes in Amazon biodiversity. In the future, the growth response of remaining old-growth mature Amazon forests will saturate, and these ecosystems may switch from sink to source driven by higher respiration (temperature), higher mortality (as outputs equilibrate to the growth inputs and periodic drought) or compositional change (disturbances). Any switch from carbon sink to source would have profound implications for global climate, biodiversity and human welfare, while the documented acceleration of tree growth and mortality may already be affecting the interactions among millions of species. © 2008 The Royal Society.en
dc.language.isoen-
dc.publisherPhilosophical Transactions of the Royal Society B: Biological Sciences-
dc.relation.ispartofVolume 363, Número 1498, Pags. 1819-1827pt_BR
dc.rightsAttribution-NonCommercial-NoDerivs 3.0 Brazil*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/br/*
dc.subjectBiodiversityen
dc.subjectCarbon Sinken
dc.subjectDeforestationen
dc.subjectEnvironmental Monitoringen
dc.subjectForest Ecosystemen
dc.subjectGlobal Climateen
dc.subjectGrowth Rateen
dc.subjectGrowth Responseen
dc.subjectMacroecologyen
dc.subjectMortalityen
dc.subjectNeotropical Regionen
dc.subjectOld-growth Foresten
dc.subjectPhytomassen
dc.subjectRainforesten
dc.subjectSoil Carbonen
dc.subjectTwentieth Centuryen
dc.subjectAmazoniaen
dc.subjectSouth Americaen
dc.titleThe changing Amazon foresten
dc.typeTrabalho Apresentado em Eventopt_BR
dc.identifier.doi10.1098/rstb.2007.0033-
Aparece nas coleções:Trabalhos Apresentados em Evento

Arquivos associados a este item:
Arquivo TamanhoFormato 
conferencia-inpa.pdf415,57 kBAdobe PDFVisualizar/Abrir


Este item está licenciada sob uma Licença Creative Commons Creative Commons