Use este identificador para citar ou linkar para este item: http://repositorio.inpa.gov.br/handle/123/1842
Título: Markedly divergent estimates of Amazon forest carbon density from ground plots and satellites
Autor(es): MITCHARD, EDWARD T. A.
GLOOR, MANUEL
Ter Steege, Hans
MEIR, PATRICK
ALVAREZ, ESTEBAN
ARAUJO-MURAKAMI, ALEJANDRO
ARAGÃO, LUIZ E. O. C.
ARROYO, LUZMILA
AYMARD, GERARDO
BANKI, OLAF
BONAL, DAMIEN
FELDPAUSCH, TED R.
BROWN, SANDRA
BROWN, FOSTER I.
CERÓN, CARLOS E.
CHAMA MOSCOSO, VICTOR
CHAVE, JEROME
COMISKEY, JAMES A.
CORNEJO, FERNANDO
CORRALES MEDINA, MASSIEL
DA COSTA, LOLA
COSTA, FLAVIA R. C.
BRIENEN, ROEL J. W.
DI FIORE, ANTHONY
DOMINGUES, TOMAS F.
ERWIN, TERRY L.
FREDERICKSON, TODD
Niro Higuchi
HONORIO CORONADO, EURIDICE N.
Killeen, Tim J.
Laurance, William F.
LEVIS, CAROLINA
MAGNUSSON, WILLIAM E.
LOPEZ-GONZALEZ, GABRIELA
MARIMON, BEATRIZ S.
MARIMON JUNIOR, BEN HUR
MENDOZA POLO, IRINA
MISHRA, PIYUSH
NASCIMENTO, MARCELO T.
NEILL, DAVID
NÚÑEZ VARGAS, MARIO P.
PALACIOS, WALTER A.
PARADA, ALEXANDER
PARDO MOLINA, GUIDO
Monteagudo, Abel
PEÑA-CLAROS, MARIELOS
PITMAN, NIGEL
PERES, CARLOS A.
POORTER, LOURENS
Prieto, Adriana
RAMIREZ-ANGULO, HIRMA
RESTREPO CORREA, ZORAYDA
ROOPSIND, ANAND
ROUCOUX, KATHERINE H.
RUDAS, AGUSTIN
Baker, Timothy R.
Salomão, Rafael P.
SCHIETTI, JULIANA
SILVEIRA, MARCOS
DE SOUZA, PRISCILA F.
STEININGER, MARC K.
STROPP, JULIANA
TERBORGH, JOHN
THOMAS, RAQUEL
TOLEDO, MARISOL
TORRES-LEZAMA, ARMANDO
LEWIS, SIMON L.
VAN ANDEL, TINDE R.
VAN DER HEIJDEN, GEERTJE M. F.
VIEIRA, IMA CÉLIA GUIMARÃES
VIEIRA, SIMONE
VILANOVA-TORRE, EMILIO
VOS, VINCENT A.
WANG, OPHELIA
ZARTMAN, CHARLES E.
Malhi, Yadvinder
PHILLIPS, OLIVER L.
LLOYD, JON
QUESADA, CARLOS A.
Assunto: Conservação Florestal
Mudanças Climáticas
ISSN: 1466-822X
Revista: Global Ecology and Biogeography
Volume: 1
Resumo: Aim The accurate mapping of forest carbon stocks is essential for understanding the global carbon cycle, for assessing emissions from deforestation, and for rational land-use planning. Remote sensing (RS) is currently the key tool for this purpose, but RS does not estimate vegetation biomass directly, and thus may miss significant spatial variations in forest structure. We test the stated accuracy of pantropical carbon maps using a large independent field dataset.Location Tropical forests of the Amazon basin. The permanent archive of the field plot data can be accessed at: http://dx.doi.org/10.5521/FORESTPLOTS.NET/2014_1Methods Two recent pantropical RS maps of vegetation carbon are compared to a unique ground-plot dataset, involving tree measurements in 413 large inventory plots located in nine countries. The RS maps were compared directly to field plots, and kriging of the field data was used to allow area-based comparisons.Results The two RS carbon maps fail to capture the main gradient in Amazon forest carbon detected using 413 ground plots, from the densely wooded tall forests of the north-east, to the light-wooded, shorter forests of the south-west. The differences between plots and RS maps far exceed the uncertainties given in these studies, with whole regions over-or under-estimated by > 25%, whereas regional uncertainties for the maps were reported to be < 5%.Main conclusions Pantropical biomass maps are widely used by governments and by projects aiming to reduce deforestation using carbon offsets, but may have significant regional biases. Carbon-mapping techniques must be revised to account for the known ecological variation in tree wood density and allometry to create maps suitable for carbon accounting. The use of single relationships between tree canopy height and above-ground biomass inevitably yields large, spatially correlated errors. This presents a significant challenge to both the forest conservation and remote sensing communities, because neither wood density nor species assemblages can be reliably mapped from space.
URI: http://repositorio.inpa.gov.br/handle/123/1842
ISSN: 1466-822X
DOI: https://dx.doi.org/10.1111/geb.12168
Aparece nas coleções:Coordenação de Dinâmica Ambiental (CDAM)

Arquivos associados a este item:
Não existem arquivos associados a este item.


Este item está licenciada sob uma Licença Creative Commons Creative Commons