Use este identificador para citar ou linkar para este item: http://repositorio.inpa.gov.br/handle/123/5865
Título: Modelagem Estocastica Na Estimativa da Capacidade de Suporte Humano: Um Instrumento Para O Planejamento de Desenvolvimento Na Amazonia
Autor(es): Philip Martin Fearnside
Assunto: Capacidade de Suporte Humnao
Desenvolvimento Sustentado
Agroecossistemas
ISSN: 0009-6725
Revista: Ciência e Cultura
Volume: 38
Resumo: Stochastic modeling and human carrying capacity estimation: a tool for development planning in Amazonia. Human carrying capacity is best approached as a gradiente of increasing probability of individual failure to meet specified criteria, with increasing populations density within a defined rang of densities and subject to appropriate assumptions depending on the system and estimation technique employed. Carrying capacity is the population limit beyond which probability of failure, calculated over a sustained period, exceeds a maximum acceptable level. Simulation modeling is a powerful tool in estimating and studying carrying capacity and the factors that influence it. Stochastic features of tropical agroecosystems are especially important, as illustrated by a model developed for estimating carrying capacity in Brazil's Transamazon highway colonization area. Future carrying capacity research should strive both to strengthen the theoretical basis of carrying capacity estimates and to make these estimates into practical tools for development planners. Carrying capacity, with its emphasis on sustainable production and individual consumption levels, provides a valuable focus for shaping development goals, including colonization, land tenure, and population policies.
URI: http://repositorio.inpa.gov.br/handle/123/5865
ISSN: 0009-6725
Local de publicação: Brasil
Aparece nas coleções:Coordenação de Dinâmica Ambiental (CDAM)

Arquivos associados a este item:
Arquivo Descrição TamanhoFormato 
Modelagem_Estocastica.pdf350,3 kBAdobe PDFVisualizar/Abrir


Este item está licenciada sob uma Licença Creative Commons Creative Commons