A case study of a gravity wave induced by Amazon forest orography and low level jet generation

dc.contributor.authorCorrêa, Polari Batista
dc.contributor.authorDias Junior, Cléo Q.
dc.contributor.authorCava, Daniela
dc.contributor.authorSörgel, Matthias
dc.contributor.authorBotía, Santiago
dc.contributor.authorAcevedo, Otávio C.
dc.contributor.authorOliveira, Pablo E.S.
dc.contributor.authorOcimar Manzi, Antônio
dc.contributor.authorMachado, Luiz Augusto Toledo
dc.contributor.authorMartins, Hardiney Dos Santos
dc.contributor.authorTsokankunku, Anywhere
dc.contributor.authorAraújo, Alessandro Carioca de
dc.date.accessioned2021-07-02T21:52:14Z
dc.date.available2021-07-02T21:52:14Z
dc.date.issued2021
dc.description.abstractWe investigated the role of turbulent coherent structures (CS), gravity waves (GW) and low-level jet (LLJ) propagation in the flow dynamics of the Nocturnal Boundary Layer (NBL) within and above a forest canopy at the Amazon Tall Tower Observatory (ATTO), in Central Amazon. Seven levels of wind velocity and temperature measurements allowed the study of the flow structure below and above the surface layer. We analyzed one dynamically rich night in 2015, which includes three distinct periods. In the first one, the NBL is characterized by CS generated at the canopy top. In the second period, the change in wind direction triggers the onset of a orographic GW above the roughness sublayer. The wave, suppressing the propagation of CS, strongly influences the boundary layer structure, both above and below the canopy. In the third period, low turbulence intensity at the canopy top enables the development of a LLJ. As the jet shear layer propagates upward, it disrupts the wave oscillations, while LLJ dominates the flow dynamics. The wavelet analyses identified i) turbulent and non-turbulent structures with different length and time-scales; ii) coupling of the flow at different levels and the vertical propagation of turbulent and wave motions; and iii) the ability of turbulent and low frequency processes associated with the orographic GW to penetrate within the canopy. Further, scalar measurements of methane, carbon monoxide and carbon dioxide identified the LLJ nose as upward limit for how far scalars can be transported. © 2021 Elsevier B.V.pt_BR
dc.identifier.doi10.1016/j.agrformet.2021.108457
dc.identifier.urihttps://repositorio.inpa.gov.br/handle/1/37794
dc.language.isoenpt_BR
dc.publisher.journalAgricultural and Forest Meteorologypt_BR
dc.relation.ispartofVolume 307 Número 108457pt_BR
dc.rightsAttribution-NonCommercial-NoDerivs 3.0 Brazil*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/br/*
dc.subjectCoherent structurespt_BR
dc.subjectGravity wavespt_BR
dc.subjectLow-level jetpt_BR
dc.subjectStable boundary layerpt_BR
dc.titleA case study of a gravity wave induced by Amazon forest orography and low level jet generationpt_BR
dc.typeArtigopt_BR

Arquivos

Coleções