Use este identificador para citar ou linkar para este item: https://repositorio.inpa.gov.br/handle/1/14706
Título: Towards monitoring biodiversity in amazonian forests: How regular samples capture meso-scale altitudinal variation in 25 km2 plots
Autor: Norris, Darren
Fortin, Marie Joseé
Magnusson, William Ernest
Palavras-chave: Altitude
Altitude Acclimatization
Biodiversity
Environmental Impact Assessment
Environmental Monitoring
Forest
Geographic And Geological Phenomena
Geographic Distribution
Geographic Information System
Geography
Geostatistical Analysis
Measurement Accuracy
Measurement Precision
Meso Scale Altitudinal Variation
Sample Size
Standardization
Biological Model
Ecosystem Monitoring
Rainforest
Biodiversity
Ecological Parameter Monitoring
Models, Biological
Rainforest
Data do documento: 2014
Revista: PLoS ONE
É parte de: Volume 9, Número 8
Abstract: Background: Ecological monitoring and sampling optima are context and location specific. Novel applications (e.g. biodiversity monitoring for environmental service payments) call for renewed efforts to establish reliable and robust monitoring in biodiversity rich areas. As there is little information on the distribution of biodiversity across the Amazon basin, we used altitude as a proxy for biological variables to test whether meso-scale variation can be adequately represented by different sample sizes in a standardized, regular-coverage sampling arrangement. Methodology/Principal Findings: We used Shuttle-Radar-Topography-Mission digital elevation values to evaluate if the regular sampling arrangement in standard RAPELD (rapid assessments ("RAP") over the long-term (LTER ["PELD" in Portuguese])) grids captured patters in meso-scale spatial variation. The adequacy of different sample sizes (n = 4 to 120) were examined within 32,325 km 2/3,232,500 ha (1293×25 km2 sample areas) distributed across the legal Brazilian Amazon. Kolmogorov-Smirnov-tests, correlation and root-mean-square-error were used to measure sample representativeness, similarity and accuracy respectively. Trends and thresholds of these responses in relation to sample size and standard-deviation were modeled using Generalized-Additive-Models and conditional-inference-trees respectively. We found that a regular arrangement of 30 samples captured the distribution of altitude values within these areas. Sample size was more important than sample standard deviation for representativeness and similarity. In contrast, accuracy was more strongly influenced by sample standard deviation. Additionally, analysis of spatially interpolated data showed that spatial patterns in altitude were also recovered within areas using a regular arrangement of 30 samples. Conclusions/Significance: Our findings show that the logistically feasible sample used in the RAPELD system successfully recovers meso-scale altitudinal patterns. This suggests that the sample size and regular arrangement may also be generally appropriate for quantifying spatial patterns in biodiversity at similar scales across at least 90% (≈5 million km 2) of the Brazilian Amazon. © 2014 Norris et al.
DOI: 10.1371/journal.pone.0106150
Aparece nas coleções:Artigos

Arquivos associados a este item:
Arquivo Descrição TamanhoFormato 
artigo-inpa.pdf578,65 kBAdobe PDFThumbnail
Visualizar/Abrir


Este item está licenciada sob uma Licença Creative Commons Creative Commons