Use este identificador para citar ou linkar para este item: https://repositorio.inpa.gov.br/handle/1/14854
Título: The steady-state mosaic of disturbance and succession across an old-growth central Amazon forest landscape
Autor: Chambers, Jeffrey Quintin
Negrón-Juárez, Robinson I.
Marra, Daniel Magnabosco
Di Vittorio, Alan V.
Tews, Jörg
Roberts, Dar A.
Ribeiro, Gabriel Henrique Pires de Mello
Trumbore, Susan Elizabeth
Higuchi, Niro
Palavras-chave: Carbon Dioxide
Biodiversity
Biomass
Community Succession
Controlled Study
Ecosystem
Fertilization
Field Study
Forest
Gap Dynamics
Landscape
Mortality
Mosaicism
Nonhuman
Plots And Curves
Priority Journal
Probability
Recycling
Remote Sensing
Scoring System
Sensitivity Analysis
Simulation
Steady State
Stochastic Model
Time Perception
Time Series Analysis
Tree
Trend Study
Tropical Rain Forest
Biomass
Carbon Cycle
Computer Simulation
Ecosystem
Models, Biological
Rivers
Trees
Tropical Climate
Data do documento: 2013
Revista: Proceedings of the National Academy of Sciences of the United States of America
É parte de: Volume 110, Número 10, Pags. 3949-3954
Abstract: Old-growth forest ecosystems comprise a mosaic of patches in different successional stages, with the fraction of the landscape in any particular state relatively constant over large temporal and spatial scales. The size distribution and return frequency of disturbance events, and subsequent recovery processes, determine to a large extent the spatial scale over which this old-growth steady state develops. Here, we characterize this mosaic for a Central Amazon forest by integrating field plot data, remote sensing disturbance probability distribution functions, and individual-based simulation modeling. Results demonstrate that a steady state of patches of varying successional age occurs over a relatively large spatial scale, with important implications for detecting temporal trends on plots that sample a small fraction of the landscape. Long highly significant stochastic runs averaging 1.0 Mg biomass·ha-1·y-1 were often punctuated by episodic disturbance events, resulting in a saw tooth time series of hectare-scale tree biomass. To maximize the detection of temporal trends for this Central Amazon site (e.g., driven by CO2 fertilization), plots larger than 10 ha would provide the greatest sensitivity. A model-based analysis of fractional mortality across all gap sizes demonstrated that 9.1-16.9% of tree mortality was missing from plot-based approaches, underscoring the need to combine plot and remote-sensing methods for estimating net landscape carbon balance. Old-growth tropical forests can exhibit complex large-scale structure driven by disturbance and recovery cycles, with ecosystem and community attributes of hectare-scale plots exhibiting continuous dynamic departures from a steady-state condition.
DOI: 10.1073/pnas.1202894110
Aparece nas coleções:Artigos

Arquivos associados a este item:
Arquivo Descrição TamanhoFormato 
artigo-inpa.pdf2,63 MBAdobe PDFThumbnail
Visualizar/Abrir


Este item está licenciada sob uma Licença Creative Commons Creative Commons