Use este identificador para citar ou linkar para este item: https://repositorio.inpa.gov.br/handle/1/14893
Título: Local spatial structure of forest biomass and its consequences for remote sensing of carbon stocks
Autor: Réjou-Méchain, Maxime
Muller-Landau, Helene C.
Detto, Matteo
Thomas, Sean C.
Le-Toan, Thuy
Saatchi, Sassan S.
Barreto-Silva, Juan Sebastian
Bourg, Norman A.
Bunyavejchewin, Sarayudh
Butt, Nathalie
Brockelman, Warren Y.
Cao, Min
Cárdenas, Dairón
Chiang, Jyh-Min
Chuyong, George Bindeh
Clay, Keith
Condit, Richard S.
Dattaraja, Handanakere Shavaramaiah
Davies, Stuart James
Duque M, Alvaro J.
Esufali, Shameema T.
Ewango, Corneille E.N.
Fernando, R. H S
Fletcher, Christine Dawn
N Gunatilleke, I. A.U.
Hao, Zhanqing
Harms, Kyle E.
Hart, Terese B.
Hérault, Bruno
Howe, Robert W.
Hubbell, Stephen P.
Johnson, Daniel J.
Kenfack, David
Larson, Andrew J.
Lin, Luxiang
Lin, Yiching
Lutz, James A.
Makana, Jean Rémy
Malhi, Yadvinder Singh
Marthews, Toby R.
McEwan, Ryan Walker
McMahon, Sean M.
McShea, William J.
Muscarella, Robert A.
Nathalang, Anuttara
Noor, Nur Supardi Md
Nytch, Christopher J.
Oliveira, Alexandre Adalardo de
Phillips, Richard P.
Pongpattananurak, Nantachai
Punchi-Manage, Ruwan
Salim, R.
Schurman, Jonathan S.
Sukumar, Raman
Suresh, Hebbalalu Sathyanarayana
Suwanvecho, Udomlux
Thomas, Duncan W.
Thompson, Jill
Uríarte, Ma?ia
Valencia, Renato L.
Vicentini, Alberto
Wolf, Amy T.
Yap, Sandra L.
Yuan, Zuoqiang
Zartman, Charles Eugene
Zimmerman, Jess K.
Chave, Jérôme
Palavras-chave: Biomass
Carbon Sequestration
Forest Cover
Remote Sensing
Spatial Data
Data do documento: 2014
Revista: Biogeosciences
É parte de: Volume 11, Número 23, Pags. 6827-6840
Abstract: Advances in forest carbon mapping have the potential to greatly reduce uncertainties in the global carbon budget and to facilitate effective emissions mitigation strategies such as REDD+ (Reducing Emissions from Deforestation and Forest Degradation). Though broad-scale mapping is based primarily on remote sensing data, the accuracy of resulting forest carbon stock estimates depends critically on the quality of field measurements and calibration procedures. The mismatch in spatial scales between field inventory plots and larger pixels of current and planned remote sensing products for forest biomass mapping is of particular concern, as it has the potential to introduce errors, especially if forest biomass shows strong local spatial variation. Here, we used 30 large (8-50 ha) globally distributed permanent forest plots to quantify the spatial variability in aboveground biomass density (AGBD in Mg ha-1) at spatial scales ranging from 5 to 250 m (0.025-6.25 ha), and to evaluate the implications of this variability for calibrating remote sensing products using simulated remote sensing footprints. We found that local spatial variability in AGBD is large for standard plot sizes, averaging 46.3% for replicate 0.1 ha subplots within a single large plot, and 16.6% for 1 ha subplots. AGBD showed weak spatial autocorrelation at distances of 20-400 m, with autocorrelation higher in sites with higher topographic variability and statistically significant in half of the sites. We further show that when field calibration plots are smaller than the remote sensing pixels, the high local spatial variability in AGBD leads to a substantial "dilution" bias in calibration parameters, a bias that cannot be removed with standard statistical methods. Our results suggest that topography should be explicitly accounted for in future sampling strategies and that much care must be taken in designing calibration schemes if remote sensing of forest carbon is to achieve its promise. © Author(s) 2014.
DOI: 10.5194/bg-11-6827-2014
Aparece nas coleções:Artigos

Arquivos associados a este item:
Arquivo Descrição TamanhoFormato 
artigo-inpa.pdf481,15 kBAdobe PDFThumbnail
Visualizar/Abrir


Este item está licenciada sob uma Licença Creative Commons Creative Commons