Please use this identifier to cite or link to this item: https://repositorio.inpa.gov.br/handle/1/15973
Title: Dynamic balancing of isoprene carbon sources reflects photosynthetic and photorespiratory responses to temperature stress
Authors: Jardine, Kolby J.
Chambers, Jeffrey Quintin
Alves, Eliane Gomes
Teixeira, Andrea
Garcia, Sabrina
Holm, Jennifer A.
Higuchi, Niro
Manzi, Antônio Ocimar
Abrell, Leif
Fuentes, José D.
Nielsen, Lars Keld
Torn, Margaret Susan
Vickers, Claudia Estelle
Keywords: 1,3 Butadiene Derivative
Carbon
Carbon Dioxide
Hemiterpene
Isoprene
Pentane
Terpene
Environment
Heat
Light
Metabolism
Photosynthesis
Physiology
Plant Leaf
Radiation Response
Temperature
Tree
Butadienes
Carbon
Carbon Dioxide
Carbon Isotopes
Environment
Hemiterpenes
Hot Temperature
Light
Pentanes
Photosynthesis
Plant Leaves
Temperature
Terpenes
Trees
Issue Date: 2014
metadata.dc.publisher.journal: Plant Physiology
metadata.dc.relation.ispartof: Volume 166, Número 4, Pags. 2051-2064
Abstract: The volatile gas isoprene is emitted in teragrams per annum quantities from the terrestrial biosphere and exerts a large effect on atmospheric chemistry. Isoprene is made primarily from recently fixed photosynthate; however, alternate carbon sources play an important role, particularly when photosynthate is limiting. We examined the relative contribution of these alternate carbon sources under changes in light and temperature, the two environmental conditions that have the strongest influence over isoprene emission. Using a novel real-time analytical approach that allowed us to examine dynamic changes in carbon sources, we observed that relative contributions do not change as a function of light intensity. We found that the classical uncoupling of isoprene emission from net photosynthesis at elevated leaf temperatures is associated with an increased contribution of alternate carbon. We also observed a rapid compensatory response where alternate carbon sources compensated for transient decreases in recently fixed carbon during thermal ramping, thereby maintaining overall increases in isoprene production rates at high temperatures. Photorespiration is known to contribute to the decline in net photosynthesis at high leaf temperatures. A reduction in the temperature at which the contribution of alternate carbon sources increased was observed under photorespiratory conditions, while photosynthetic conditions increased this temperature. Feeding [2-13C]glycine (a photorespiratory intermediate) stimulated emissions of [13C1–5]isoprene and 13CO2, supporting the possibility that photorespiration can provide an alternate source of carbon for isoprene synthesis. Our observations have important implications for establishing improved mechanistic predictions of isoprene emissions and primary carbon metabolism, particularly under the predicted increases in future global temperatures. © 2014 American Society of Plant Biologists. All rights reserved.
metadata.dc.identifier.doi: 10.1104/pp.114.247494
Appears in Collections:Artigos

Files in This Item:
File Description SizeFormat 
artigo-inpa.pdf1,86 MBAdobe PDFThumbnail
View/Open


This item is licensed under a Creative Commons License Creative Commons