Please use this identifier to cite or link to this item: https://repositorio.inpa.gov.br/handle/1/18440
Title: Diversity and composition of Amazonian moths in primary, secondary and plantation forests
Authors: Hawes, Joseph E.
Motta, Catarina da Silva
Overal, William L.
Barlow, Jos
Gardner, Toby Alan
Peres, Carlos A.
Keywords: Abundance
Anthropogenic Effect
Community Dynamics
Ecosystem Management
Environmental Disturbance
Hypothesis Testing
Introduced Species
Land-use Change
Moth
Plantation
Secondary Forest
Species Richness
Amazonia
South America
Arctiidae
Eucalyptus
Eucalyptus Urograndis
Lepidoptera
Saturniidae
Sphingidae
Issue Date: 2009
metadata.dc.publisher.journal: Journal of Tropical Ecology
metadata.dc.relation.ispartof: Volume 25, Número 3, Pags. 281-300
Abstract: The response of tropical fauna to landscape-level habitat change is poorly understood. Increased conversion of native primary forest to alternative land-uses, including secondary forest and exotic tree plantations, highlights the importance of assessing diversity patterns within these forest types. We sampled 1848 moths from 335 species of Arctiidae, Saturniidae and Sphingidae, over a total of 30 trap-nights. Sampling was conducted during the wet season 2005, using three light-traps at 15 sites within areas of primary forest, secondary forest and Eucalyptus urograndis plantations in northern Brazilian Amazonia. The Jari study region provides one of the best opportunities to investigate the ecological consequences of land-use change, and this study is one of the first to examine patterns of diversity for a neotropical moth assemblage in a human-dominated landscape in lowland Amazonia. We found that the three moth families responded consistently to disturbance in terms of abundance and community structure but variably in terms of species richness, in a manner apparently supporting a life-history hypothesis. Our results suggest that secondary forests and Eucalyptus plantations can support a substantial level of moth diversity but also show that these forest types hold assemblages with significantly distinct community structures and composition from primary forest. In addition, the ability of these converted land-uses to support primary forest species may be enhanced by proximity to surrounding primary forest, an issue which requires consideration when assessing the diversity and composition of mobile taxa in human-dominated landscapes. © Cambridge University Press 2009.
metadata.dc.identifier.doi: 10.1017/S0266467409006038
Appears in Collections:Artigos

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.