Use este identificador para citar ou linkar para este item: https://repositorio.inpa.gov.br/handle/1/18669
Título: Acclimation to humic substances prevents whole body sodium loss and stimulates branchial calcium uptake capacity in cardinal tetras Paracheirodon axelrodi (Schultz) subjected to extremely low pH
Autor: Matsuo, Aline Y.O.
Val, Adalberto Luis
Palavras-chave: Paracheirodon Axelrodi
Data do documento: 2007
Revista: Journal of Fish Biology
É parte de: Volume 70, Número 4, Pags. 989-1000
Abstract: Kinetics of sodium (Na+) and calcium (Ca2+) uptake were studied in cardinal tetras Paracheirodon axelrodi acclimated to humic substances (HS, 35 mg C l-1) and low pH (pH 3.72), parallel to analysis of whole body Na+ and Ca2+ content. This species had a high uptake capacity (Jmax) for both Na+ and Ca 2+ in soft, ion-poor water. The affinity constant (Km) did not vary significantly among treatments for either Na+ or Ca 2+. Jmax Na+ increased 30% in fish acclimated to HS for 5 weeks. Acclimation to low pH had no effect on Jmax Na+ but this treatment was associated with a 32% decrease on whole body Na+ content, suggesting that fish were unable to compensate for the increased Na+ loss induced by extreme acidity. Exposure of fish to HS + low pH, the treatment most closely approximating to the conditions experienced by the species in its native environment, resulted in an increase in whole body Na+ by 31% relative to acclimation to low pH alone. Jmax Ca2+ in cardinal tetras was high relative to that documented in other freshwater species acclimated to soft water (Jmax = 30 nmol g-1 h-1). Prolonged exposure of fish to pH 3.72 inhibited Jmax Ca2+ by 53%, although whole body Ca 2+ content remained unchanged relative to control. Acclimation of fish to HS + low pH resulted in an increase of Jmax Ca2+ by 166% relative to low pH alone. Collectively, these results suggest that HS protect cardinal tetras acclimated to soft, acidic waters by preventing excessive Na+ loss (as indicated by whole body Na+ content) and by stimulating Ca2+ uptake (as indicated by increased Jmax Ca2+) to ensure proper homeostasis. © 2007 The Fisheries Society of the British Isles.
DOI: 10.1111/j.1095-8649.2007.01358.x
Aparece nas coleções:Artigos

Arquivos associados a este item:
Não existem arquivos associados a este item.


Os itens no repositório estão protegidos por copyright, com todos os direitos reservados, salvo quando é indicado o contrário.