Use este identificador para citar ou linkar para este item: https://repositorio.inpa.gov.br/handle/1/14686
Título: Predictive models of primary tropical forest structure from geomorphometric variables based on SRTM in the Tapajo's region, Brazilian Amazon
Autor: Bispo, Polyanna da Conceição
Santos, João Roberto dos
Morisson Valeriano, Márcio de
Graça, Paulo Maurício Lima Alencastro de
Balzter, Heiko
França, Helena
Bispo, Pitágoras C.
Palavras-chave: Altitude
Canopy
Forest Structure
Polymorphism, Genetic
Height
Model
Multiple Linear Regression Analysis
Tropical Rain Forest
Uncertainty
Validation Process
Vegetation
Biological Model
Rainforest
Tropic Climate
Models, Biological
Rainforest
Tropical Climate
Data do documento: 2016
Revista: PLoS ONE
Encontra-se em: Volume 11, Número 4
Abstract: Surveying primary tropical forest over large regions is challenging. Indirect methods of relating terrain information or other external spatial datasets to forest biophysical parameters can provide forest structural maps at large scales but the inherent uncertainties need to be evaluated fully. The goal of the present study was to evaluate relief characteristics, measured through geomorphometric variables, as predictors of forest structural characteristics such as average tree basal area (BA) and height (H) and average percentage canopy openness (CO). Our hypothesis is that geomorphometric variables are good predictors of the structure of primary tropical forest, even in areas, with low altitude variation. The study was performed at the Tapajo's National Forest, located in the Western State of Pará, Brazil. Forty-three plots were sampled. Predictive models for BA, H and CO were parameterized based on geomorphometric variables using multiple linear regression. Validation of the models with nine independent sample plots revealed a Root Mean Square Error (RMSE) of 3.73 m2/ha (20%) for BA, 1.70 m (12%) for H, and 1.78% (21%) for CO. The coefficient of determination between observed and predicted values were r2 = 0.32 for CO, r2 = 0.26 for H and r2 = 0.52 for BA. The models obtained were able to adequately estimate BA and CO. In summary, it can be concluded that relief variables are good predictors of vegetation structure and enable the creation of forest structure maps in primary tropical rainforest with an acceptable uncertainty. © 2016 Bispo et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
DOI: 10.1371/journal.pone.0152009
Aparece nas coleções:Artigos

Arquivos associados a este item:
Arquivo Descrição TamanhoFormato 
artigo-inpa.pdf3,79 MBAdobe PDFThumbnail
Visualizar/Abrir


Este item está licenciada sob uma Licença Creative Commons Creative Commons