Use este identificador para citar ou linkar para este item: https://repositorio.inpa.gov.br/handle/1/14892
Título: Life cycle of bamboo in the southwestern Amazon and its relation to fire events
Autor: Dalagnol, Ricardo
Wagner, Fabien H.
Galvão, L. S.
Nelson, Bruce Walker
Aragao, L. E.O.C.
Palavras-chave: Accuracy Assessment
Bamboo
Climate Change
Drought
Flowering
Fruiting
Life Cycle
Modis
Probability
Spatial Distribution
Temperature Anomaly
Time Series Analysis
Amazon River
Bambusa
Guadua
Data do documento: 2018
Revista: Biogeosciences
É parte de: Volume 15, Número 20, Pags. 6087-6104
Abstract: Bamboo-dominated forests comprise 1 % of the world's forests and 3 % of the Amazon forests. The Guadua spp. bamboos that dominate the southwest Amazon are semelparous; thus flowering and fruiting occur once in a lifetime before death. These events occur in massive spatially organized patches every 28 years and produce huge quantities of necromass. The bamboo-fire hypothesis argues that increased dry fuel after die-off enhances fire probability, creating opportunities that favor bamboo growth. In this study, our aim is to map the bamboo-dominated forests and test the bamboo-fire hypothesis using satellite imagery. Specifically, we developed and validated a method to map the bamboo die-off and its spatial distribution using satellite-derived reflectance time series from the Moderate Resolution Imaging Spectroradiometer (MODIS) and explored the bamboo-fire hypothesis by evaluating the relationship between bamboo die-off and fires detected by the MODIS thermal anomalies product in the southwest Amazon. Our findings show that the near-infrared (NIR) is the most sensitive spectral interval to characterize bamboo growth and cohort age. Automatic detection of historical bamboo die-off achieved an accuracy above 79 %. We mapped and estimated 15.5 million ha of bamboo-dominated forests in the region. The bamboo-fire hypothesis was not supported because only a small fraction of bamboo areas burned during the analysis timescale, and, in general, bamboo did not show higher fire probability after the die-off. Nonetheless, fire occurrence was 45 % higher in dead than live bamboo in drought years, associated with ignition sources from land use, suggesting a bamboo-human-fire association. Although our findings show that the observed fire was not sufficient to drive bamboo dominance, the increased fire occurrence in dead bamboo in drought years may contribute to the maintenance of bamboo and potential expansion into adjacent bamboo-free forests. Fire can even bring deadly consequences to these adjacent forests under climate change effects. © 2018 Author(s).
DOI: 10.5194/bg-15-6087-2018
Aparece nas coleções:Artigos

Arquivos associados a este item:
Arquivo Descrição TamanhoFormato 
artigo-inpa.pdf3,57 MBAdobe PDFThumbnail
Visualizar/Abrir


Este item está licenciada sob uma Licença Creative Commons Creative Commons