Use este identificador para citar ou linkar para este item: https://repositorio.inpa.gov.br/handle/1/15858
Título: Structural, vibrational, and electronic properties of the glucoalkaloid strictosidine: A combined experimental and theoretical study
Autor: Costa, Renyer Alves
Pinheiro, Maria Lúcia Belém
Oliveira, Kelson Mota Teixeira de
Barison, Andersson
Salomé, Kahlil Schwanka
Iank, Júlio Rodolfo
Silva, Noam Gadelha da
Cabral, Tiara Sousa
Costa, Emmanoel Vilaca?
Data do documento: 2016
Revista: Journal of Chemistry
É parte de: Volume 2016
Abstract: A detailed structural analysis and spectral behavior of the glucoalkaloid strictosidine, a precursor of all monoterpene indole alkaloids, are discussed. The experimental NMR, FTIR, and UV results were compared to the theoretical DFT spectra calculated by Becke using the three-parameter Lee-Yang-Parr (B3LYP) function with 6-31G(d) and 6-311++G(2d,p) basis sets. The theoretical geometry optimization data were compared with the X-ray data for precursors and similar structures in the associated literature. The similarity between the theoretical and experimental coupling constants values made it possible to affirm the values of dihedral angles and their configuration, reinforcing findings from previous stereochemical studies. Theoretical UV analysis agreed well with the measured experimental data, with bands assigned. Calculated HOMO/LUMO gaps show low excitation energy for strictosidine, justifying its stability and reaction kinetics. The molecular electrostatic potential map shows opposite potentials regions that form hydrogen bonds that stabilize the dimeric form, which were confirmed by excellent agreement of the dimeric form theoretical wavenumbers with the experimental IR spectrum. ESI-MS/MS data revealed patterns for the fragmentation of the protonated strictosidine molecule outlined by an NBO study. © 2016 Renyer Alves Costa et al.
DOI: 10.1155/2016/1752429
Aparece nas coleções:Artigos

Arquivos associados a este item:
Arquivo Descrição TamanhoFormato 
artigo-inpa.pdf3,16 MBAdobe PDFThumbnail
Visualizar/Abrir


Este item está licenciada sob uma Licença Creative Commons Creative Commons