Please use this identifier to cite or link to this item:
Title: Unveiling geographical gradients of species richness from scant occurrence data
Authors: Alves, Davi Mello Cunha Crescente
Eduardo, Anderson Aires
Silva Oliveira, Eduardo Vinícius da
Villalobos, Fabricio
Dobrovolski, Ricardo
Pereira, Taiguã Corrêa
Souza Ribeiro, Adauto de
Stropp, Juliana
Rodrigues, João Fabrício Mota
Diniz-Filho, José Alexandre Felizola
Gouveia, Sidney F.
Keywords: Autocorrelation
Data Quality
Geographical Variation
Regression Analysis
Spatial Analysis
Species Occurrence
Species Richness
South America
Issue Date: 2020
metadata.dc.publisher.journal: Global Ecology and Biogeography
metadata.dc.relation.ispartof: Volume 29, Número 4, Pags. 748-759
Abstract: Aim: Despite longstanding investigation, the gradients of species richness remain unknown for most taxa because of shortfalls in knowledge regarding the quantity and distribution of species. Here, we explore the ability of a geostatistical interpolation model, regression-kriging, to recover geographical gradients of species richness. We examined the technique with an in silico gradient of species richness and evaluated the effect of different configurations of knowledge shortfalls. We also took the same approach for empirical data with large knowledge gaps, the infraorder Furnariides of suboscine birds. Innovation: Regression-kriging builds upon two cornerstones of geographical gradients of biodiversity, the spatial autocorrelation of species richness and the conspicuous association of species with environmental factors. With this technique, we recovered a simulated gradient of richness using < 0.01% of sampling sites across the region. The accuracy of the regression-kriging is higher when input samples are more evenly distributed throughout the geographical space rather than the environmental space of the target region. Moreover, the accuracy of this method is more sensitive to the sufficiency of sampling effort within cells than to the quantity of sampled localities. For Furnariides birds, regression-kriging provided a geographical gradient of species richness that resembles purported patterns of other groups and illustrated ubiquitous shortfalls of knowledge about bird diversity. Main conclusions: Geostatistical interpolation, such as regression-kriging, might be a useful tool to overcome shortfalls in knowledge that plague our understanding of geographical gradients of biodiversity, with many applications in ecology, palaeoecology and conservation. © 2020 John Wiley & Sons Ltd
metadata.dc.identifier.doi: 10.1111/geb.13055
Appears in Collections:Artigos

Files in This Item:
There are no files associated with this item.

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.