Use este identificador para citar ou linkar para este item: https://repositorio.inpa.gov.br/handle/1/16614
Registro completo de metadados
Campo DCValorIdioma
dc.contributor.authorAlmeida, Catherine Torres de-
dc.contributor.authorGalvão, L. S.-
dc.contributor.authorAragao, L. E.O.C.-
dc.contributor.authorOmetto, Jean Pierre Henry Balbaud-
dc.contributor.authorJacon, Aline Daniele-
dc.contributor.authorPereira, Francisca Rocha de Souza-
dc.contributor.authorSato, Luciane Yumie-
dc.contributor.authorLopes, Aline Pontes-
dc.contributor.authorGraça, Paulo Maurício Lima Alencastro de-
dc.contributor.authorSilva, Camila Valéria de Jesus-
dc.contributor.authorFerreira-Ferreira, Jefferson-
dc.contributor.authorLongo, Marcos-
dc.date.accessioned2020-06-15T21:35:26Z-
dc.date.available2020-06-15T21:35:26Z-
dc.date.issued2019-
dc.identifier.urihttps://repositorio.inpa.gov.br/handle/1/16614-
dc.description.abstractAccurate estimates of aboveground biomass (AGB) in tropical forests are critical for supporting strategies of ecosystem functioning conservation and climate change mitigation. However, such estimates at regional and local scales are still highly uncertain. Airborne Light Detection And Ranging (LiDAR) and Hyperspectral Imaging (HSI) can characterize the structural and functional diversity of forests with high accuracy at a sub-meter resolution, and potentially improve the AGB estimations. In this study, we compared the ability of different data sources (airborne LiDAR and HSI, and their combination) and regression methods (linear model - LM, linear model with ridge regularization - LMR, Support Vector Regression - SVR, Random Forest - RF, Stochastic Gradient Boosting - SGB, and Cubist - CB) to improve AGB predictions in the Brazilian Amazon. We used georeferenced inventory data from 132 sample plots to obtain a reference field AGB and calculated 333 metrics (45 from LiDAR and 288 from HSI) that could be used as predictors for statistical AGB models. We submitted the metrics to a correlation filtering followed by a feature selection procedure (recursive feature elimination) to optimize the performance of the models and to reduce their complexity. Results showed that both LiDAR and HSI data used alone provided relatively high accurate models if adequate metrics and algorithms are chosen (RMSE = 67.6 Mg.ha−1, RMSE% = 36%, R2 = 0.58, for the best LiDAR model; RMSE = 68.1 Mg.ha−1, RMSE% = 36%, R2 = 0.58, for the best HSI model). However, HSI-only models required more metrics (5–12) than LiDAR-only models (2–5). Models combining metrics from both datasets resulted in more accurate AGB estimates, regardless of the regression method (RMSE = 57.7 Mg.ha−1, RMSE% = 31%, R2 = 0.70, for the best model). The most important LiDAR metrics for estimating AGB were related to the upper canopy cover and tree height percentiles, while the most important HSI metrics were associated with the near infrared and shortwave infrared spectral regions, particularly the leaf/canopy water and lignin-cellulose absorption bands. Finally, an analysis of variance (ANOVA) showed that the remote sensing data source (LiDAR, HSI, or their combination) had a greater effect size than the regression algorithms. Thus, no single algorithm outperformed the others, although the LM method was less suitable when applied to the HSI and hybrid datasets. Results show that the synergistic use of LiDAR and hyperspectral data has great potential for improving the accuracy of the biomass estimates in the Brazilian Amazon. © 2019 Elsevier Inc.en
dc.language.isoenpt_BR
dc.relation.ispartofVolume 232pt_BR
dc.rightsRestrito*
dc.subjectAnalysis Of Variance (anova)en
dc.subjectBiomassen
dc.subjectClimate Changeen
dc.subjectData Integrationen
dc.subjectDecision Treesen
dc.subjectForestryen
dc.subjectHyperspectral Imagingen
dc.subjectInfrared Devicesen
dc.subjectLithium Compoundsen
dc.subjectRegression Analysisen
dc.subjectRemote Sensingen
dc.subjectSpectroscopyen
dc.subjectStochastic Modelsen
dc.subjectStochastic Systemsen
dc.subjectWater Absorptionen
dc.subjectCarbon Stocksen
dc.subjectHyperspectral Remote Sensingen
dc.subjectLaser Scanningen
dc.subjectLight Detection And Rangingen
dc.subjectRecursive Feature Eliminationen
dc.subjectStochastic Gradient Boostingen
dc.subjectSupport Vector Regression (svr)en
dc.subjectTropical Foresten
dc.subjectOptical Radaren
dc.subjectAboveground Biomassen
dc.subjectAlgorithmen
dc.subjectData Assimilationen
dc.subjectLaser Methoden
dc.subjectLidaren
dc.subjectModelingen
dc.subjectRemote Sensingen
dc.subjectSpectral Analysisen
dc.subjectTropical Foresten
dc.subjectVariance Analysisen
dc.subjectBiomassen
dc.subjectForestryen
dc.subjectLithium Compoundsen
dc.subjectRegression Analysisen
dc.subjectRemote Sensingen
dc.subjectSpectroscopyen
dc.subjectAmazoniaen
dc.titleCombining LiDAR and hyperspectral data for aboveground biomass modeling in the Brazilian Amazon using different regression algorithmsen
dc.typeArtigopt_BR
dc.identifier.doi10.1016/j.rse.2019.111323-
dc.publisher.journalRemote Sensing of Environmentpt_BR
Aparece nas coleções:Artigos

Arquivos associados a este item:
Não existem arquivos associados a este item.


Os itens no repositório estão protegidos por copyright, com todos os direitos reservados, salvo quando é indicado o contrário.