Use este identificador para citar ou linkar para este item: https://repositorio.inpa.gov.br/handle/1/16922
Registro completo de metadados
Campo DCValorIdioma
dc.contributor.authorGerken, Tobias-
dc.contributor.authorRuddell, Benjamin L.-
dc.contributor.authorFuentes, José D.-
dc.contributor.authorAraüjo, Alessandro Carioca de-
dc.contributor.authorBrunsell, Nathaniel A.-
dc.contributor.authorMaia, Jair Max Furtunato-
dc.contributor.authorManzi, Antônio Ocimar-
dc.contributor.authorMercer, Juliane Rezende-
dc.contributor.authordos Santos, Rosa Maria Nascimento-
dc.contributor.authorRandow, Celso Von-
dc.contributor.authorStoy, Paul C.-
dc.date.accessioned2020-06-15T21:37:21Z-
dc.date.available2020-06-15T21:37:21Z-
dc.date.issued2018-
dc.identifier.urihttps://repositorio.inpa.gov.br/handle/1/16922-
dc.description.abstractThis work investigates the diurnal and seasonal behavior of the energy balance residual (E) that results from the observed difference between available energy and the turbulent fluxes of sensible heat (H) and latent heat (LE) at the FLUXNET BR-Ma2 site located in the Brazilian central Amazon rainforest. The behavior of E is analyzed by extending the eddy covariance averaging length from 30 min to 4 h and by applying an Information Flow Dynamical Process Network to diagnose processes and conditions affecting E across different seasons. Results show that the seasonal turbulent flux dynamics and the Bowen ratio are primarily driven by net radiation (Rn), with substantial sub-seasonal variability. The Bowen ratio increased from 0.25 in April to 0.4 at the end of September. Extension of the averaging length from 0.5 (94.6% closure) to 4 h and thus inclusion of longer timescale eddies and mesoscale processes closes the energy balance and lead to an increase in the Bowen ratio, thus highlighting the importance of additional H to E. Information flow analysis reveals that the components of the energy balance explain between 25 and 40% of the total Shannon entropy with higher values during the wet season than the dry season. Dry season information flow from the buoyancy flux to E are 30–50% larger than that from H, indicating the potential importance of buoyancy fluxes to closing E. While the low closure highlights additional sources not captured in the flux data and random measurement errors contributing to E, the findings of the information flow and averaging length analysis are consistent with the impact of mesoscale circulations, which tend to transport more H than LE, on the lack of closure. © 2017 Elsevier B.V.en
dc.language.isoenpt_BR
dc.relation.ispartofVolume 255, Pags. 92-103pt_BR
dc.rightsRestrito*
dc.subjectBowen Ratioen
dc.subjectEddy Covarianceen
dc.subjectEnergy Balanceen
dc.subjectInformationen
dc.subjectLatent Heat Fluxen
dc.subjectNet Radiationen
dc.subjectRainforesten
dc.subjectSeasonal Variationen
dc.subjectSensible Heat Fluxen
dc.subjectEnergy Surfaceen
dc.subjectTropical Foresten
dc.subjectTurbulent Flowen
dc.subjectAmazoniaen
dc.titleInvestigating the mechanisms responsible for the lack of surface energy balance closure in a central Amazonian tropical rainforesten
dc.typeArtigopt_BR
dc.identifier.doi10.1016/j.agrformet.2017.03.023-
dc.publisher.journalAgricultural and Forest Meteorologypt_BR
Aparece nas coleções:Artigos

Arquivos associados a este item:
Não existem arquivos associados a este item.


Os itens no repositório estão protegidos por copyright, com todos os direitos reservados, salvo quando é indicado o contrário.