Please use this identifier to cite or link to this item:
Title: Mechanical vulnerability and resistance to snapping and uprooting for Central Amazon tree species
Authors: Ribeiro, Gabriel Henrique Pires de Mello
Chambers, Jeffrey Quintin
J, Peterson, Chris
Trumbore, Susan Elizabeth
Marra, Daniel Magnabosco
Wirth, Christian B.
B, Cannon, Jeffery
Negrón-Juárez, Robinson I.
Lima, Adriano José Nogueira
Paula, E. V.C.M. de
Santos, Joaquim dos
Higuchi, Niro
Keywords: Biology
Regression Analysis
Blow Down
Functional Traits
Tree Allometry
Tree Static Winching
Turning Moment
Wind Disturbance
Ecological Modeling
Ecosystem Structure
Forest Ecosystem
Soil Texture
Species Diversity
Tropical Forest
Wind Velocity
Woody Plant
Issue Date: 2016
metadata.dc.publisher.journal: Forest Ecology and Management
metadata.dc.relation.ispartof: Volume 380, Pags. 1-10
Abstract: High descending winds generated by convective storms are a frequent and a major source of tree mortality disturbance events in the Amazon, affecting forest structure and diversity across a variety of scales, and more frequently observed in western and central portions of the basin. Soil texture in the Central Amazon also varies significantly with elevation along a topographic gradient, with decreasing clay content on plateaus, slopes and valleys respectively. In this study we investigated the critical turning moments (Mcrit - rotational force at the moment of tree failure, an indicator of tree stability or wind resistance) of 60 trees, ranging from 19.0 to 41.1 cm in diameter at breast height (DBH) and located in different topographic positions, and for different species, using a cable-winch load-cell system. Our approach used torque as a measure of tree failure to the point of snapping or uprooting. This approach provides a better understanding of the mechanical forces required to topple trees in tropical forests, and will inform models of wind throw disturbance. Across the topographic positions, size controlled variation in Mcrit was quantified for cardeiro (Scleronema mincranthum (Ducke) Ducke), mata-matá (Eschweilera spp.), and a random selection of trees from 19 other species. Our analysis of Mcrit revealed that tree resistance to failure increased with size (DBH and ABG) and differed among species. No effects of topography or failure mode were found for the species either separately or pooled. For the random species, total variance in Mcrit explained by tree size metrics increased from an R2 of 0.49 for DBH alone, to 0.68 when both DBH and stem fresh wood density (SWD) were included in a multiple regression model. This mechanistic approach allows the comparison of tree vulnerability induced by wind damage across ecosystems, and facilitates the use of forest structural information in ecosystem models that include variable resistance of trees to mortality inducing factors. Our results indicate that observed topographic differences in windthrow vulnerability are likely due to elevational differences in wind velocities, rather than by differences in soil-related factors that might effect Mcrit. © 2016
metadata.dc.identifier.doi: 10.1016/j.foreco.2016.08.039
Appears in Collections:Artigos

Files in This Item:
There are no files associated with this item.

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.