Artigo

Linking canopy leaf area and light environments with tree size distributions to explain Amazon forest demography

Resumo

Abstract:

Forest biophysical structure - the arrangement and frequency of leaves and stems - emerges from growth, mortality and space filling dynamics, and may also influence those dynamics by structuring light environments. To investigate this interaction, we developed models that could use LiDAR remote sensing to link leaf area profiles with tree size distributions, comparing models which did not (metabolic scaling theory) and did allow light to influence this link. We found that a light environment-to-structure link was necessary to accurately simulate tree size distributions and canopy structure in two contrasting Amazon forests. Partitioning leaf area profiles into size-class components, we found that demographic rates were related to variation in light absorption, with mortality increasing relative to growth in higher light, consistent with a light environment feedback to size distributions. Combining LiDAR with models linking forest structure and demography offers a high-throughput approach to advance theory and investigate climate-relevant tropical forest change. © 2015 John Wiley & Sons Ltd/CNRS.

Descrição

Citação

ISSN

Coleções

Avaliação

Revisão

Suplementado Por

Referenciado Por