Please use this identifier to cite or link to this item:
Title: Sex Differences in the Electrocommunication Signals of the Electric Fish Apteronotus bonapartii
Authors: Ho, Winnie W.
Fernandes, Cristina Cox
Alves-Gomes, José Antônio
Smith, G. Troy
Keywords: Androgen
Electrical Method
Frequency Analysis
Functional Morphology
Interspecific Variation
Paradigm Shift
Sex-related Difference
Sexual Dimorphism
South America
Issue Date: 2010
metadata.dc.publisher.journal: Ethology
metadata.dc.relation.ispartof: Volume 116, Número 11, Pags. 1050-1064
Abstract: The South American weakly electric knifefish (Apteronotidae) produce highly diverse and readily quantifiable electrocommunication signals. The electric organ discharge frequency (EODf) and EOD modulations (chirps and gradual frequency rises) vary dramatically across sexes and species, presenting an ideal opportunity to examine the proximate and ultimate bases of sexually dimorphic behavior. We complemented previous studies on the sexual dimorphism of apteronotid communication signals by investigating electric signal features and their hormonal correlates in Apteronotusbonapartii, a species which exhibits strong sexual dimorphism in snout morphology. Electrocommunication signals were evoked and recorded using a playback paradigm and were analyzed for signal features including EOD frequency and the structure of EOD modulations. To investigate the androgenic correlates of sexually dimorphic EOD signals, we measured plasma concentrations of testosterone and 11-ketotestosterone. A. bonapartii responded robustly to stimulus playbacks. EODf was sexually monomorphic, and males and females produced chirps with similar durations and amounts of frequency modulation. However, males were more likely than females to produce chirps with multiple frequency peaks. Sexual dimorphism in apteronotid electrocommunication signals appears to be highly evolutionarily labile. Extensive interspecific variation in the magnitude and direction of sex differences in EODf and in different aspects of chirp structure suggests that chirp signals may be an important locus of evolutionary change within the clade. The weakly electric fish represent a rich source of data for understanding the selective pressures that shape, and the neuroendocrine mechanisms that underlie, diversity in the sexual dimorphism of behavior. © 2010 Blackwell Verlag GmbH.
metadata.dc.identifier.doi: 10.1111/j.1439-0310.2010.01823.x
Appears in Collections:Artigos

Files in This Item:
There are no files associated with this item.

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.