Please use this identifier to cite or link to this item:
Title: The role of size in synchronous air breathing of Hoplosternum littorale
Authors: Sloman, Katherine A.
Sloman, Richard D.
Boeck, Gudrun de
Scott, Graham R.
Iftikar, Fathima I.
Wood, Chris M.
Val, Vera Maria Fonseca Almeida e
Val, Adalberto Luis
Keywords: Glycogen
Lactic Acid
Air-breathing Organism
Behavioral Response
Body Mass
Body Size
Evolutionary Biology
Group Behavior
Physiological Response
Body Size
Comparative Study
Regression Analysis
Social Behavior
Body Size
Lactic Acid
Regression Analysis
Social Behavior
Hoplosternum Littorale
Issue Date: 2009
metadata.dc.publisher.journal: Physiological and Biochemical Zoology
metadata.dc.relation.ispartof: Volume 82, Número 6, Pags. 625-634
Abstract: Synchronized air breathing may have evolved as a way of minimizing the predation risk known to be associated with air breathing in fish. Little is known about how the size of individuals affects synchronized air breathing and whether some individuals are required to surface earlier than necessary in support of conspecifics, while others delay air intake. Here, the air-breathing behavior of Hoplosternum littorale held in groups or in isolation was investigated in relation to body mass, oxygen tensions, and a variety of other physiological parameters (plasma lactate, hepatic glycogen, hematocrit, hemoglobin, and size of heart, branchial basket, liver, and air-breathing organ [ABO]). A mass-specific relationship with oxygen tension of first surfacing was seen when fish were held in isolation; smaller individuals surfaced at higher oxygen tensions. However, this relationship was lost when the same individuals were held in social groups of four, where synchronous air breathing was observed. In isolation, 62% of fish first surfaced at an oxygen tension lower than the calculated Pcrit (8.13 kPa), but in the group environment this was reduced to 38% of individuals. Higher oxygen tensions at first surfacing in the group environment were related to higher levels of activity rather than any of the physiological parameters measured. In fish held in isolation but denied access to the water surface for 12 h before behavioral testing, there was no mass-specific relationship with oxygen tension at first surfacing. Larger individuals with a greater capacity to store air in their ABOs may, therefore, remain in hypoxic waters for longer periods than smaller individuals when held in isolation unless prior access to the air is prevented. This study highlights how social interaction can affect air-breathing behaviors and the importance of considering both behavioral and physiological responses of fish to hypoxia to understand the survival mechanisms they employ. © 2009 by The University of Chicago. All rights reserved.
metadata.dc.identifier.doi: 10.1086/605936
Appears in Collections:Artigos

Files in This Item:
There are no files associated with this item.

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.