Please use this identifier to cite or link to this item:
Title: Tree allometry and improved estimation of carbon stocks and balance in tropical forests
Authors: Chave, Jérôme
Andalo, Christophe
Brown, Sandra L.
Cairns, Michael A.
Chambers, Jeffrey Quintin
Eamus, Derek
Fölster, Horst
Fromard, François
Higuchi, Niro
Kira, T.
Lescure, J. P.
Nelson, Bruce Walker
Ogawa, Husato
Puig, Henri
Riéra, Bernard
Yamakura, Takuo
Keywords: Carbon
Carbon Balance
Tropical Forest
Growth, Development And Aging
Regression Analysis
Statistical Model
Theoretical Model
Tropic Climate
Models, Statistical
Models, Theoretical
Regression Analysis
Tropical Climate
Issue Date: 2005
metadata.dc.publisher.journal: Oecologia
metadata.dc.relation.ispartof: Volume 145, Número 1, Pags. 87-99
Abstract: Tropical forests hold large stores of carbon, yet uncertainty remains regarding their quantitative contribution to the global carbon cycle. One approach to quantifying carbon biomass stores consists in inferring changes from long-term forest inventory plots. Regression models are used to convert inventory data into an estimate of aboveground biomass (AGB). We provide a critical reassessment of the quality and the robustness of these models across tropical forest types, using a large dataset of 2,410 trees ≥ 5 cm diameter, directly harvested in 27 study sites across the tropics. Proportional relationships between aboveground biomass and the product of wood density, trunk cross-sectional area, and total height are constructed. We also develop a regression model involving wood density and stem diameter only. Our models were tested for secondary and old-growth forests, for dry, moist and wet forests, for lowland and montane forests, and for mangrove forests. The most important predictors of AGB of a tree were, in decreasing order of importance, its trunk diameter, wood specific gravity, total height, and forest type (dry, moist, or wet). Overestimates prevailed, giving a bias of 0.5-6.5% when errors were averaged across all stands. Our regression models can be used reliably to predict aboveground tree biomass across a broad range of tropical forests. Because they are based on an unprecedented dataset, these models should improve the quality of tropical biomass estimates, and bring consensus about the contribution of the tropical forest biome and tropical deforestation to the global carbon cycle. © Springer-Verlag 2005.
metadata.dc.identifier.doi: 10.1007/s00442-005-0100-x
Appears in Collections:Artigos

Files in This Item:
There are no files associated with this item.

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.