Please use this identifier to cite or link to this item:
https://repositorio.inpa.gov.br/handle/1/38059
Title: | Impacts of selective logging on Amazon forest canopy structure and biomass with a LiDAR and photogrammetric survey sequence |
Authors: | Valbuena, Rubén Stark, Scott C. Papa, Daniel de Almeida Cunha, Renato Mesquita da Nelson, Bruce Walker Silva, Carlos Alberto Oliveira, Luís Cláudio de Almeida, Danilo Roberti Alves de Figueiredo, Evandro Orfanó D'Oliveira, Marcus Vinício Neves |
Keywords: | Remote sensing Forest monitoring Digital terrain model Amazon forest |
Issue Date: | 2021 |
metadata.dc.publisher.journal: | Forest Ecology and Management |
metadata.dc.relation.ispartof: | Volume 500 |
Abstract: | Sustainable forest management relies on good knowledge of forest structure obtained from ground surveys combined with remote sensing. Capable of detecting both the forest floor and canopy elements, airborne LiDAR can estimate forest structure parameters with accuracy and precision, but is still difficult to acquire due to the lake of service provider in remote regions of developing countries. Alternatively if ground surface elevations are known (e.g., from LiDAR), they can be tied to a canopy surface model derived from stereo photogrammetry using RGB images from unmanned aerial vehicles (UAV). Here we assessed whether such photogrammetric canopy measurements offer aboveground biomass (AGB) and disturbance impact estimates from logging that are comparable to LiDAR, and whether the use of both in sequence can provide an efficient post-harvest monitoring system. Specifically, through a combination of forest inventory ground plots, airborne LiDAR data, and a UAV-RGB camera system we (i) automatically located and measured canopy disturbance caused by logging, (ii) compared AGB models produced by LiDAR alone and the combination of LiDAR (for terrain elevation model) and RGB-photogrammetry (for forest surface model), and (iii) estimated the AGB stock loss from logging. The study was carried out in the Antimary State forest located in the southwestern Brazilian Amazon. Our results demonstrate that the use of RGB-photogrammetry in regions where the terrain elevation has already been estimated can be an effective way to rapidly identify selective logging and to accurately monitor its impact. |
metadata.dc.identifier.doi: | 10.1016/j.foreco.2021.119648 |
Appears in Collections: | Artigos |
Files in This Item:
File | Size | Format | |
---|---|---|---|
Repositório do INPA.pdf | 182,86 kB | Adobe PDF | View/Open |
This item is licensed under a Creative Commons License