A principal component analysis approach to assess CHIRPS precipitation dataset for the study of climate variability of the La Plata Basin, Southern South America

dc.contributor.authorCerón, Wilmar Loaiza
dc.contributor.authorMolina-Carpio, Jorge
dc.contributor.authorRivera, Irma Ayes
dc.contributor.authorAndreoli, Rita Valéria
dc.contributor.authorKayano, Mary Toshie
dc.contributor.authorCanchala, Teresita
dc.date.accessioned2020-07-03T21:58:33Z
dc.date.available2020-07-03T21:58:33Z
dc.date.issued2020
dc.description.abstractThis article assesses the consistency of the satellite precipitation estimate CHIRPS v.2 to describe the spatiotemporal rainfall variability in the La Plata Basin (LPB), the second largest hydrographic basin in South America, by (a) pixel-to-point comparison of CHIRPS data with 167 observed monthly precipitation time series using three pairwise metrics (coefficient of correlation, bias and root mean square error) and (b) principal component analysis (PCA) to evaluate the large-scale coherence between CHIRPS and rain gauge data. The pairwise metrics indicate that CHIRPS better represents the rainfall in the coastal, northeastern and southeastern parts of the basin than in the Andean region to the west. The PCA shows that CHIRPS describes most of the observed rainfall variability in the LPB, but contains more variability, especially during December–February and March–May seasons. The two major modes observed are highly correlated spatially (empirical orthogonal functions—EOFs) and temporally (principal components—PCs) with the corresponding CHIRPS modes. The PCA allows the determination of the main rainfall variability modes and their possible relations with climate variability modes. Besides, the analyses of the precipitation anomaly modes show that the El Niño Southern Oscillation explains the first EOF modes of datasets. The PCA provides an alternative and effective means of assessing the consistency of CHIRPS data in representing spatial and temporal rainfall variability in the LPB. © 2020, Springer Nature B.V.en
dc.identifier.doi10.1007/s11069-020-04011-x
dc.identifier.urihttps://repositorio.inpa.gov.br/handle/1/23295
dc.language.isoenpt_BR
dc.publisher.journalNatural Hazardspt_BR
dc.rightsRestrito*
dc.subjectCHIRPSen
dc.subjectLa Plata Basinen
dc.subjectPerformance metricsen
dc.subjectPrincipal Component Analysisen
dc.subjectSatellite precipitation estimateen
dc.subjectenpt_BR
dc.titleA principal component analysis approach to assess CHIRPS precipitation dataset for the study of climate variability of the La Plata Basin, Southern South Americaen
dc.typeArtigopt_BR

Arquivos

Coleções