Local spatial structure of forest biomass and its consequences for remote sensing of carbon stocks

dc.contributor.authorRéjou-Méchain, Maxime
dc.contributor.authorMuller-Landau, Helene C.
dc.contributor.authorDetto, Matteo
dc.contributor.authorThomas, Sean C.
dc.contributor.authorLe-Toan, Thuy
dc.contributor.authorSaatchi, Sassan S.
dc.contributor.authorBarreto-Silva, Juan Sebastian
dc.contributor.authorBourg, Norman A.
dc.contributor.authorBunyavejchewin, Sarayudh
dc.contributor.authorButt, Nathalie
dc.contributor.authorBrockelman, Warren Y.
dc.contributor.authorCao, Min
dc.contributor.authorCárdenas, Dairón
dc.contributor.authorChiang, Jyh-Min
dc.contributor.authorChuyong, George Bindeh
dc.contributor.authorClay, Keith
dc.contributor.authorCondit, Richard S.
dc.contributor.authorDattaraja, Handanakere Shavaramaiah
dc.contributor.authorDavies, Stuart James
dc.contributor.authorDuque M, Alvaro J.
dc.contributor.authorEsufali, Shameema T.
dc.contributor.authorEwango, Corneille E.N.
dc.contributor.authorFernando, R. H S
dc.contributor.authorFletcher, Christine Dawn
dc.contributor.authorN Gunatilleke, I. A.U.
dc.contributor.authorHao, Zhanqing
dc.contributor.authorHarms, Kyle E.
dc.contributor.authorHart, Terese B.
dc.contributor.authorHérault, Bruno
dc.contributor.authorHowe, Robert W.
dc.contributor.authorHubbell, Stephen P.
dc.contributor.authorJohnson, Daniel J.
dc.contributor.authorKenfack, David
dc.contributor.authorLarson, Andrew J.
dc.contributor.authorLin, Luxiang
dc.contributor.authorLin, Yiching
dc.contributor.authorLutz, James A.
dc.contributor.authorMakana, Jean Rémy
dc.contributor.authorMalhi, Yadvinder Singh
dc.contributor.authorMarthews, Toby R.
dc.contributor.authorMcEwan, Ryan Walker
dc.contributor.authorMcMahon, Sean M.
dc.contributor.authorMcShea, William J.
dc.contributor.authorMuscarella, Robert A.
dc.contributor.authorNathalang, Anuttara
dc.contributor.authorNoor, Nur Supardi Md
dc.contributor.authorNytch, Christopher J.
dc.contributor.authorOliveira, Alexandre Adalardo de
dc.contributor.authorPhillips, Richard P.
dc.contributor.authorPongpattananurak, Nantachai
dc.contributor.authorPunchi-Manage, Ruwan
dc.contributor.authorSalim, R.
dc.contributor.authorSchurman, Jonathan S.
dc.contributor.authorSukumar, Raman
dc.contributor.authorSuresh, Hebbalalu Sathyanarayana
dc.contributor.authorSuwanvecho, Udomlux
dc.contributor.authorThomas, Duncan W.
dc.contributor.authorThompson, Jill
dc.contributor.authorUríarte, Ma?ia
dc.contributor.authorValencia, Renato L.
dc.contributor.authorVicentini, Alberto
dc.contributor.authorWolf, Amy T.
dc.contributor.authorYap, Sandra L.
dc.contributor.authorYuan, Zuoqiang
dc.contributor.authorZartman, Charles Eugene
dc.contributor.authorZimmerman, Jess K.
dc.contributor.authorChave, Jérôme
dc.date.accessioned2020-05-07T13:47:14Z
dc.date.available2020-05-07T13:47:14Z
dc.date.issued2014
dc.description.abstractAdvances in forest carbon mapping have the potential to greatly reduce uncertainties in the global carbon budget and to facilitate effective emissions mitigation strategies such as REDD+ (Reducing Emissions from Deforestation and Forest Degradation). Though broad-scale mapping is based primarily on remote sensing data, the accuracy of resulting forest carbon stock estimates depends critically on the quality of field measurements and calibration procedures. The mismatch in spatial scales between field inventory plots and larger pixels of current and planned remote sensing products for forest biomass mapping is of particular concern, as it has the potential to introduce errors, especially if forest biomass shows strong local spatial variation. Here, we used 30 large (8-50 ha) globally distributed permanent forest plots to quantify the spatial variability in aboveground biomass density (AGBD in Mg ha-1) at spatial scales ranging from 5 to 250 m (0.025-6.25 ha), and to evaluate the implications of this variability for calibrating remote sensing products using simulated remote sensing footprints. We found that local spatial variability in AGBD is large for standard plot sizes, averaging 46.3% for replicate 0.1 ha subplots within a single large plot, and 16.6% for 1 ha subplots. AGBD showed weak spatial autocorrelation at distances of 20-400 m, with autocorrelation higher in sites with higher topographic variability and statistically significant in half of the sites. We further show that when field calibration plots are smaller than the remote sensing pixels, the high local spatial variability in AGBD leads to a substantial "dilution" bias in calibration parameters, a bias that cannot be removed with standard statistical methods. Our results suggest that topography should be explicitly accounted for in future sampling strategies and that much care must be taken in designing calibration schemes if remote sensing of forest carbon is to achieve its promise. © Author(s) 2014.en
dc.identifier.doi10.5194/bg-11-6827-2014
dc.identifier.urihttps://repositorio.inpa.gov.br/handle/1/14893
dc.language.isoenpt_BR
dc.publisher.journalBiogeosciencespt_BR
dc.relation.ispartofVolume 11, Número 23, Pags. 6827-6840pt_BR
dc.rightsAttribution-NonCommercial-NoDerivs 3.0 Brazil*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/br/*
dc.subjectBiomassen
dc.subjectCarbon Sequestrationen
dc.subjectForest Coveren
dc.subjectRemote Sensingen
dc.subjectSpatial Dataen
dc.titleLocal spatial structure of forest biomass and its consequences for remote sensing of carbon stocksen
dc.typeArtigopt_BR

Arquivos

Pacote original

Agora exibindo 1 - 1 de 1
Carregando...
Imagem de Miniatura
Nome:
artigo-inpa.pdf
Tamanho:
481.15 KB
Formato:
Adobe Portable Document Format

Coleções