Tropical forest wood production: A cross-continental comparison

dc.contributor.authorBanin, Lindsay F.
dc.contributor.authorLewis, Simon L.
dc.contributor.authorLopez-Gonzalez, Gabriela
dc.contributor.authorBaker, Timothy R.
dc.contributor.authorQuesada, Carlos Alberto
dc.contributor.authorChao, Kuo Jung
dc.contributor.authorBurslem, David F.R.P.
dc.contributor.authorNilus, Reuben
dc.contributor.authorSalim, Kamariah Abu
dc.contributor.authorKeeling, Helen C.
dc.contributor.authorTan, Sylvester Kheng San
dc.contributor.authorDavies, Stuart James
dc.contributor.authorMonteagudo-Mendoza, Abel
dc.contributor.authorVásquez, Rodolfo V.
dc.contributor.authorLloyd, Jon
dc.contributor.authorNeill, David A.
dc.contributor.authorPitman, Nigel C.A.
dc.contributor.authorPhillips, Oliver L.
dc.date.accessioned2020-06-15T21:49:11Z
dc.date.available2020-06-15T21:49:11Z
dc.date.issued2014
dc.description.abstractSummary: Tropical forest above-ground wood production (AGWP) varies substantially along environmental gradients. Some evidence suggests that AGWP may vary between regions and specifically that Asian forests have particularly high AGWP. However, comparisons across biogeographic regions using standardized methods are lacking, limiting our assessment of pan-tropical variation in AGWP and potential causes. We sampled AGWP in NW Amazon (17 long-term forest plots) and N Borneo (11 plots), both with abundant year-round precipitation. Within each region, forests growing on a broad range of edaphic conditions were sampled using standardized soil and forest measurement techniques. Plot-level AGWP was 49% greater in Borneo than in Amazonia (9.73 ± 0.56 vs. 6.53 ± 0.34 Mg dry mass ha-1 a-1, respectively; regional mean ± 1 SE). AGWP was positively associated with soil fertility (PCA axes, sum of bases and total P). After controlling for the edaphic environment, AGWP remained significantly higher in Bornean plots. Differences in AGWP were largely attributable to differing height-diameter allometry in the two regions and the abundance of large trees in Borneo. This may be explained, in part, by the greater solar radiation in Borneo compared with NW Amazonia. Trees belonging to the dominant SE Asian family, Dipterocarpaceae, gained woody biomass faster than otherwise equivalent, neighbouring non-dipterocarps, implying that the exceptional production of Bornean forests may be driven by floristic elements. This dominant SE Asian family may partition biomass differently or be more efficient at harvesting resources and in converting them to woody biomass. Synthesis. N Bornean forests have much greater AGWP rates than those in NW Amazon when soil conditions and rainfall are controlled for. Greater resource availability and the highly productive dipterocarps may, in combination, explain why Asian forests produce wood half as fast again as comparable forests in the Amazon. Our results also suggest that taxonomic groups differ in their fundamental ability to capture carbon and that different tropical regions may therefore have different carbon uptake capacities due to biogeographic history. North Bornean forests have much greater AGWP rates than those in north-western Amazon when soil conditions and rainfall are controlled for. Greater resource availability and the highly productive dipterocarps may, in combination, explain why these Asian forests produce wood half as fast again as comparable forests in the Amazon. Our results also suggest that taxonomic groups differ in their fundamental ability to capture carbon and that different tropical regions may therefore have different carbon uptake capacities due to biogeographic history. © 2014 British Ecological Society.en
dc.identifier.doi10.1111/1365-2745.12263
dc.identifier.urihttps://repositorio.inpa.gov.br/handle/1/17772
dc.language.isoenpt_BR
dc.publisher.journalJournal of Ecologypt_BR
dc.relation.ispartofVolume 102, Número 4, Pags. 1025-1037pt_BR
dc.rightsRestrito*
dc.subjectAboveground Productionen
dc.subjectAllometryen
dc.subjectBiological Uptakeen
dc.subjectBiomassen
dc.subjectCarbonen
dc.subjectCommunity Compositionen
dc.subjectComparative Studyen
dc.subjectDicotyledonen
dc.subjectEnvironmental Factoren
dc.subjectEnvironmental Gradienten
dc.subjectPrecipitation (climatology)en
dc.subjectResource Availabilityen
dc.subjectSoil Fertilityen
dc.subjectSoil Nutrienten
dc.subjectSoil-vegetation Interactionen
dc.subjectSolar Radiationen
dc.subjectTropical Foresten
dc.subjectWooden
dc.subjectAmazoniaen
dc.subjectAsiaen
dc.subjectBorneoen
dc.titleTropical forest wood production: A cross-continental comparisonen
dc.typeArtigopt_BR

Arquivos

Coleções