Pacific and atlantic multidecadal variability relations with the choco and caribbean low-level jets during the 1900–2015 period

dc.contributor.authorSouza, Rodrigo Augusto Ferreira De
dc.contributor.authorSouza, Itamara Parente de
dc.contributor.authorAvila Diaz, Alvaro
dc.contributor.authorAndreoli, R. V.
dc.contributor.authorKayano, Mary Toshie
dc.contributor.authorLoaiza Cerón, Wilmar
dc.date.accessioned2021-09-16T18:56:10Z
dc.date.available2021-09-16T18:56:10Z
dc.date.issued2021
dc.description.abstractThis study analyzes the variability of the Choco jet (CJ) and Caribbean low-level jet (CLLJ) with consideration of the simultaneous Pacific interdecadal oscillation (PDO) and Atlantic multidecadal oscillation (AMO) low-frequency mean states and their effects on the atmospheric circulation and rainfall in northwestern South America and Central America for the 1900–2015 period, during the seasons with the highest intensities of the CJ (September–November (SON)) and the CLLJ (June–August). Variations in the sea surface temperature (SST) anomaly positioning in the eastern Pacific, tropical North Atlantic (TNA)/Caribbean Sea during different mean states restrict the anomalous circulation, and, consequently, the intensity of the CJ and CLLJ. During the warm AMO (WAMO)/cold PDO (CPDO), the SST gradient from the tropical Pacific into the TNA, accompanied by a cyclonic circulation near the east coast of the Americas, intensifies the west–east circulation in the region, strengthening the CJ and weakening the CLLJ during SON such that rainfall increases over Colombia, Central America and in adjacent oceans. During the cold AMO (CAMO)/warm PDO (WPDO) phase, a relative east/west SST gradient occurs in TNA, consistent with a cyclonic circulation in western TNA, establishing an anomalous southwest–northwestward circulation from the eastern Pacific into the Caribbean basin, forming a well-configured CJ, increasing precipitation over Central America and its adjacent oceans. For the CLLJ, during CAMO phases, the anticyclonic circulations extended over most of the TNA favor its intensification from 30◦ W to the Caribbean Sea. In contrast, during WAMO, the cyclonic circulation near the east coast of the United States restricts its intensification to the Caribbean Sea region. To the best of our knowledge, the results presented here are new and might be useful in atmospheric modeling and extreme event studies. © 2021 by the authors. Licensee MDPI, Basel, Switzerland.pt_BR
dc.identifier.doi10.3390/atmos12091120
dc.identifier.urihttps://repositorio.inpa.gov.br/handle/1/38086
dc.language.isoenpt_BR
dc.publisher.journalAtmospherept_BR
dc.relation.ispartofVolume 12, Edição 9 Número 1120pt_BR
dc.rightsAttribution-NonCommercial-NoDerivs 3.0 Brazil*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/br/*
dc.subjectAtlantic multidecadal oscillationpt_BR
dc.subjectTwentieth century reanalysispt_BR
dc.titlePacific and atlantic multidecadal variability relations with the choco and caribbean low-level jets during the 1900–2015 periodpt_BR
dc.typeArtigopt_BR

Arquivos

Pacote original

Agora exibindo 1 - 1 de 1
Carregando...
Imagem de Miniatura
Nome:
Pacific.pdf
Tamanho:
60.54 KB
Formato:
Adobe Portable Document Format
Descrição:

Coleções