Please use this identifier to cite or link to this item:
Title: The steady-state mosaic of disturbance and succession across an old-growth central Amazon forest landscape
Authors: Chambers, Jeffrey Quintin
Negrón-Juárez, Robinson I.
Marra, Daniel Magnabosco
Di Vittorio, Alan V.
Tews, Jörg
Roberts, Dar A.
Ribeiro, Gabriel Henrique Pires de Mello
Trumbore, Susan Elizabeth
Higuchi, Niro
Keywords: Carbon Dioxide
Community Succession
Controlled Study
Field Study
Gap Dynamics
Plots And Curves
Priority Journal
Remote Sensing
Scoring System
Sensitivity Analysis
Steady State
Stochastic Model
Time Perception
Time Series Analysis
Trend Study
Tropical Rain Forest
Carbon Cycle
Computer Simulation
Models, Biological
Tropical Climate
Issue Date: 2013
metadata.dc.publisher.journal: Proceedings of the National Academy of Sciences of the United States of America
metadata.dc.relation.ispartof: Volume 110, Número 10, Pags. 3949-3954
Abstract: Old-growth forest ecosystems comprise a mosaic of patches in different successional stages, with the fraction of the landscape in any particular state relatively constant over large temporal and spatial scales. The size distribution and return frequency of disturbance events, and subsequent recovery processes, determine to a large extent the spatial scale over which this old-growth steady state develops. Here, we characterize this mosaic for a Central Amazon forest by integrating field plot data, remote sensing disturbance probability distribution functions, and individual-based simulation modeling. Results demonstrate that a steady state of patches of varying successional age occurs over a relatively large spatial scale, with important implications for detecting temporal trends on plots that sample a small fraction of the landscape. Long highly significant stochastic runs averaging 1.0 Mg biomass·ha-1·y-1 were often punctuated by episodic disturbance events, resulting in a saw tooth time series of hectare-scale tree biomass. To maximize the detection of temporal trends for this Central Amazon site (e.g., driven by CO2 fertilization), plots larger than 10 ha would provide the greatest sensitivity. A model-based analysis of fractional mortality across all gap sizes demonstrated that 9.1-16.9% of tree mortality was missing from plot-based approaches, underscoring the need to combine plot and remote-sensing methods for estimating net landscape carbon balance. Old-growth tropical forests can exhibit complex large-scale structure driven by disturbance and recovery cycles, with ecosystem and community attributes of hectare-scale plots exhibiting continuous dynamic departures from a steady-state condition.
metadata.dc.identifier.doi: 10.1073/pnas.1202894110
Appears in Collections:Artigos

Files in This Item:
File Description SizeFormat 
artigo-inpa.pdf2,63 MBAdobe PDFThumbnail

This item is licensed under a Creative Commons License Creative Commons